IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v421y2015icp488-509.html
   My bibliography  Save this article

Sector dominance ratio analysis of financial markets

Author

Listed:
  • Uechi, Lisa
  • Akutsu, Tatsuya
  • Stanley, H. Eugene
  • Marcus, Alan J.
  • Kenett, Dror Y.

Abstract

In this paper we present a new measure to investigate the functional structure of financial markets, the Sector Dominance Ratio (SDR). We study the information embedded in raw and partial correlations using random matrix theory (RMT) and examine the evolution of economic sectoral makeup on a yearly and monthly basis for four stock markets, those of the US, UK, Germany and Japan, during the period from January 2000 to December 2010. We investigate the information contained in raw and partial correlations using the sector dominance ratio and its variation over time. The evolution of economic sectoral activities can be discerned through the largest eigenvectors of both raw correlation and partial correlation matrices. We find a characteristic change of the largest eigenvalue from raw and partial correlations and the SDR that coincides with sharp breaks in asset valuations. Finally, we propose the SDR as an indicator for changes in VIX indexes.

Suggested Citation

  • Uechi, Lisa & Akutsu, Tatsuya & Stanley, H. Eugene & Marcus, Alan J. & Kenett, Dror Y., 2015. "Sector dominance ratio analysis of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 488-509.
  • Handle: RePEc:eee:phsmap:v:421:y:2015:i:c:p:488-509
    DOI: 10.1016/j.physa.2014.11.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114010267
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.11.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael C. Munnix & Takashi Shimada & Rudi Schafer & Francois Leyvraz Thomas H. Seligman & Thomas Guhr & H. E. Stanley, 2012. "Identifying States of a Financial Market," Papers 1202.1623, arXiv.org.
    2. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    3. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, September.
    4. Garas, Antonios & Argyrakis, Panos, 2007. "Correlation study of the Athens Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 399-410.
    5. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    6. Eom, Cheoljun & Jung, Woo-Sung & Kaizoji, Taisei & Kim, Seunghwan, 2009. "Effect of changing data size on eigenvalues in the Korean and Japanese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4780-4786.
    7. Granger, C. W. J., 1980. "Testing for causality : A personal viewpoint," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 329-352, May.
    8. Dror Y Kenett & Matthias Raddant & Thomas Lux & Eshel Ben-Jacob, 2012. "Evolvement of Uniformity and Volatility in the Stressed Global Financial Village," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    9. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    10. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    11. Dror Y Kenett & Michele Tumminello & Asaf Madi & Gitit Gur-Gershgoren & Rosario N Mantegna & Eshel Ben-Jacob, 2010. "Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-14, December.
    12. Michael J. Mauboussin, 2002. "Revisiting Market Efficiency: The Stock Market As A Complex Adaptive System," Journal of Applied Corporate Finance, Morgan Stanley, vol. 14(4), pages 47-55, January.
    13. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    14. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    15. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, September.
    16. Schinckus, Christophe, 2009. "Economic uncertainty and econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4415-4423.
    17. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yan & Wang, Yue & Li, Ming-Xia, 2019. "Regional characteristics of sports industry profitability: Evidence from China’s province level data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 946-955.
    2. Haiming Long & Ji Zhang & Nengyu Tang, 2017. "Does network topology influence systemic risk contribution? A perspective from the industry indices in Chinese stock market," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
    3. Thomas Lux & Duc Thi Luu & Boyan Yanovski, 2020. "An analysis of systemic risk in worldwide economic sentiment indices," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 47(4), pages 909-928, November.
    4. Jung, Sean S. & Chang, Woojin, 2016. "Clustering stocks using partial correlation coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 410-420.
    5. Luu, Duc Thi & Yanovski, Boyan & Lux, Thomas, 2018. "An analysis of systematic risk in worldwide econonomic sentiment indices," Economics Working Papers 2018-03, Christian-Albrechts-University of Kiel, Department of Economics.
    6. Nava, Noemi & Di Matteo, T. & Aste, Tomaso, 2018. "Dynamic correlations at different time-scales with empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 534-544.
    7. Chunxia, Yang & Xueshuai, Zhu & Luoluo, Jiang & Sen, Hu & He, Li, 2016. "Study on the contagion among American industries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 601-612.
    8. Duc Thi Luu, 2022. "Portfolio Correlations in the Bank-Firm Credit Market of Japan," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 529-569, August.
    9. Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
    10. Yonatan Berman & Eshel Ben-Jacob & Xin Zhang & Yoash Shapira, 2016. "Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-16, March.
    11. Liu, Xueyong & An, Haizhong & Li, Huajiao & Chen, Zhihua & Feng, Sida & Wen, Shaobo, 2017. "Features of spillover networks in international financial markets: Evidence from the G20 countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 265-278.
    12. Millington, Tristan & Niranjan, Mahesan, 2021. "Stability and similarity in financial networks—How do they change in times of turbulence?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    13. Heckens, Anton J. & Guhr, Thomas, 2022. "New collectivity measures for financial covariances and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    14. Lahmiri, Salim, 2017. "Cointegration and causal linkages in fertilizer markets across different regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 181-189.
    15. Silva, Walmir & Kimura, Herbert & Sobreiro, Vinicius Amorim, 2017. "An analysis of the literature on systemic financial risk: A survey," Journal of Financial Stability, Elsevier, vol. 28(C), pages 91-114.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
    2. Heckens, Anton J. & Guhr, Thomas, 2022. "New collectivity measures for financial covariances and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    3. Zhang, Xin & Podobnik, Boris & Kenett, Dror Y. & Eugene Stanley, H., 2014. "Systemic risk and causality dynamics of the world international shipping market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 43-53.
    4. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2014. "Partial correlation analysis: Applications for financial markets," Papers 1402.1405, arXiv.org.
    5. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    6. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    7. Panzica, Roberto Calogero, 2018. "Idiosyncratic volatility puzzle: The role of assets' interconnections," SAFE Working Paper Series 228, Leibniz Institute for Financial Research SAFE.
    8. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    9. Chester Curme & Michele Tumminello & Rosario N. Mantegna & H. Eugene Stanley & Dror Y. Kenett, 2015. "Emergence of statistically validated financial intraday lead-lag relationships," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1375-1386, August.
    10. Chen, Yanhua & Li, Youwei & Pantelous, Athanasios A. & Stanley, H. Eugene, 2022. "Short-run disequilibrium adjustment and long-run equilibrium in the international stock markets: A network-based approach," International Review of Financial Analysis, Elsevier, vol. 79(C).
    11. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    12. Germán G. Creamer & Tal Ben-Zvi, 2021. "Volatility and Risk in the Energy Market: A Trade Network Approach," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    13. Geraci, Marco Valerio & Gnabo, Jean-Yves, 2018. "Measuring Interconnectedness between Financial Institutions with Bayesian Time-Varying Vector Autoregressions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(3), pages 1371-1390, June.
    14. Bonaccolto, Giovanni & Caporin, Massimiliano & Panzica, Roberto Calogero, 2017. "Estimation and model-based combination of causality networks," SAFE Working Paper Series 165, Leibniz Institute for Financial Research SAFE.
    15. Silva, Thiago Christiano & Wilhelm, Paulo Victor Berri & Tabak, Benjamin Miranda, 2023. "The effect of interconnectivity on stock returns during the Global Financial Crisis," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    16. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    17. Dror Kenett & Shlomo Havlin, 2015. "Network science: a useful tool in economics and finance," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 14(2), pages 155-167, November.
    18. Bonaccolto, Giovanni & Caporin, Massimiliano & Panzica, Roberto, 2019. "Estimation and model-based combination of causality networks among large US banks and insurance companies," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 1-21.
    19. Caraiani, Petre, 2014. "The predictive power of singular value decomposition entropy for stock market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 571-578.
    20. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:421:y:2015:i:c:p:488-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.