IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1102.2240.html
   My bibliography  Save this paper

Quantifying and Modeling Long-Range Cross-Correlations in Multiple Time Series with Applications to World Stock Indices

Author

Listed:
  • Duan Wang
  • Boris Podobnik
  • Davor Horvati'c
  • H. Eugene Stanley

Abstract

We propose a modified time lag random matrix theory in order to study time lag cross-correlations in multiple time series. We apply the method to 48 world indices, one for each of 48 different countries. We find long-range power-law cross-correlations in the absolute values of returns that quantify risk, and find that they decay much more slowly than cross-correlations between the returns. The magnitude of the cross-correlations constitute "bad news" for international investment managers who may believe that risk is reduced by diversifying across countries. We find that when a market shock is transmitted around the world, the risk decays very slowly. We explain these time lag cross-correlations by introducing a global factor model (GFM) in which all index returns fluctuate in response to a single global factor. For each pair of individual time series of returns, the cross-correlations between returns (or magnitudes) can be modeled with the auto-correlations of the global factor returns (or magnitudes). We estimate the global factor using principal component analysis, which minimizes the variance of the residuals after removing the global trend. Using random matrix theory, a significant fraction of the world index cross-correlations can be explained by the global factor, which supports the utility of the GFM. We demonstrate applications of the GFM in forecasting risks at the world level, and in finding uncorrelated individual indices. We find 10 indices are practically uncorrelated with the global factor and with the remainder of the world indices, which is relevant information for world managers in reducing their portfolio risk. Finally, we argue that this general method can be applied to a wide range of phenomena in which time series are measured, ranging from seismology and physiology to atmospheric geophysics.

Suggested Citation

  • Duan Wang & Boris Podobnik & Davor Horvati'c & H. Eugene Stanley, 2011. "Quantifying and Modeling Long-Range Cross-Correlations in Multiple Time Series with Applications to World Stock Indices," Papers 1102.2240, arXiv.org.
  • Handle: RePEc:arx:papers:1102.2240
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1102.2240
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1102.2240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.