IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v24y2018i2p117-127n4.html
   My bibliography  Save this article

Bayesian estimation of ordinary differential equation models when the likelihood has multiple local modes

Author

Listed:
  • Liu Baisen

    (School of Statistics, Dongbei University of Finance and Economics, Dalian, 116025, P. R. China)

  • Wang Liangliang

    (Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, V5A1S6, Canada)

  • Cao Jiguo

    (Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, V5A1S6, Canada)

Abstract

Ordinary differential equations (ODEs) are popularly used to model complex dynamic systems by scientists; however, the parameters in ODE models are often unknown and have to be inferred from noisy measurements of the dynamic system. One conventional method is to maximize the likelihood function, but the likelihood function often has many local modes due to the complexity of ODEs, which makes the optimizing algorithm be vulnerable to trap in local modes. In this paper, we solve the global optimization issue of ODE parameters with the help of the Stochastic Approximation Monte Carlo (SAMC) algorithm which is shown to be self-adjusted and escape efficiently from the “local-trapping” problem. Our simulation studies indicate that the SAMC method is a powerful tool to estimate ODE parameters globally. The efficiency of SAMC method is demonstrated by estimating a predator-prey ODEs model from real experimental data.

Suggested Citation

  • Liu Baisen & Wang Liangliang & Cao Jiguo, 2018. "Bayesian estimation of ordinary differential equation models when the likelihood has multiple local modes," Monte Carlo Methods and Applications, De Gruyter, vol. 24(2), pages 117-127, June.
  • Handle: RePEc:bpj:mcmeap:v:24:y:2018:i:2:p:117-127:n:4
    DOI: 10.1515/mcma-2018-0010
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2018-0010
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2018-0010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lutz Becks & Frank M. Hilker & Horst Malchow & Klaus Jürgens & Hartmut Arndt, 2005. "Experimental demonstration of chaos in a microbial food web," Nature, Nature, vol. 435(7046), pages 1226-1229, June.
    2. Liang, Faming & Liu, Chuanhai & Carroll, Raymond J., 2007. "Stochastic Approximation in Monte Carlo Computation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 305-320, March.
    3. Chen, Jianwei & Wu, Hulin, 2008. "Efficient Local Estimation for Time-Varying Coefficients in Deterministic Dynamic Models With Applications to HIV-1 Dynamics," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 369-384, March.
    4. J. Cao & L. Wang & J. Xu, 2011. "Robust Estimation for Ordinary Differential Equation Models," Biometrics, The International Biometric Society, vol. 67(4), pages 1305-1313, December.
    5. Yangxin Huang & Dacheng Liu & Hulin Wu, 2006. "Hierarchical Bayesian Methods for Estimation of Parameters in a Longitudinal HIV Dynamic System," Biometrics, The International Biometric Society, vol. 62(2), pages 413-423, June.
    6. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    7. Calderhead, Ben & Girolami, Mark, 2009. "Estimating Bayes factors via thermodynamic integration and population MCMC," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4028-4045, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Zhang & Jiguo Cao & Raymond J. Carroll, 2017. "Estimating varying coefficients for partial differential equation models," Biometrics, The International Biometric Society, vol. 73(3), pages 949-959, September.
    2. Liu, Baisen & Wang, Liangliang & Nie, Yunlong & Cao, Jiguo, 2019. "Bayesian inference of mixed-effects ordinary differential equations models using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 233-246.
    3. Xinyu Zhang & Jiguo Cao & Raymond J. Carroll, 2015. "On the selection of ordinary differential equation models with application to predator-prey dynamical models," Biometrics, The International Biometric Society, vol. 71(1), pages 131-138, March.
    4. Hulin Wu & Hongqi Xue & Arun Kumar, 2012. "Numerical Discretization-Based Estimation Methods for Ordinary Differential Equation Models via Penalized Spline Smoothing with Applications in Biomedical Research," Biometrics, The International Biometric Society, vol. 68(2), pages 344-352, June.
    5. Zhang, Tingting & Sun, Yinge & Li, Huazhang & Yan, Guofen & Tanabe, Seiji & Miao, Ruizhong & Wang, Yaotian & Caffo, Brian S. & Quigg, Mark S., 2020. "Bayesian inference of a directional brain network model for intracranial EEG data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    6. Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
    7. Shizhe Chen & Ali Shojaie & Daniela M. Witten, 2017. "Network Reconstruction From High-Dimensional Ordinary Differential Equations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1697-1707, October.
    8. Lee, Kyoungjae & Lee, Jaeyong & Dass, Sarat C., 2018. "Inference for differential equation models using relaxation via dynamical systems," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 116-134.
    9. Giles Hooker, 2010. "Comments on: Dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 50-53, May.
    10. Commenges, D. & Jolly, D. & Drylewicz, J. & Putter, H. & Thiébaut, R., 2011. "Inference in HIV dynamics models via hierarchical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 446-456, January.
    11. Tao Lu & Yangxin Huang & Min Wang & Feng Qian, 2014. "A refined parameter estimating approach for HIV dynamic model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1645-1657, August.
    12. Golchi, Shirin & Campbell, David A., 2016. "Sequentially Constrained Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 98-113.
    13. Baisen Liu & Liangliang Wang & Yunlong Nie & Jiguo Cao, 2021. "Semiparametric Mixed-Effects Ordinary Differential Equation Models with Heavy-Tailed Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 428-445, September.
    14. Zhou, Jie & Han, Lu & Liu, Sanyang, 2013. "Nonlinear mixed-effects state space models with applications to HIV dynamics," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1448-1456.
    15. Hanwen Huang, 2022. "Bayesian multi‐level mixed‐effects model for influenza dynamics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1978-1995, November.
    16. Hong, Zhaoping & Lian, Heng, 2012. "Time-varying coefficient estimation in differential equation models with noisy time-varying covariates," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 58-67, January.
    17. Qiu, Xing & Xu, Tao & Soltanalizadeh, Babak & Wu, Hulin, 2022. "Identifiability analysis of linear ordinary differential equation systems with a single trajectory," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    18. J. Cao & L. Wang & J. Xu, 2011. "Robust Estimation for Ordinary Differential Equation Models," Biometrics, The International Biometric Society, vol. 67(4), pages 1305-1313, December.
    19. Giles Hooker, 2009. "Forcing Function Diagnostics for Nonlinear Dynamics," Biometrics, The International Biometric Society, vol. 65(3), pages 928-936, September.
    20. Hanwen Huang & Andreas Handel & Xiao Song, 2020. "A Bayesian approach to estimate parameters of ordinary differential equation," Computational Statistics, Springer, vol. 35(3), pages 1481-1499, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:24:y:2018:i:2:p:117-127:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.