IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v51y2017i1p177-195.html
   My bibliography  Save this article

Integrated Aircraft Routing, Crew Pairing, and Tail Assignment: Branch-and-Price with Many Pricing Problems

Author

Listed:
  • Sebastian Ruther

    (School of Mathematical and Physical Science, University of Newcastle, Callaghan, NSW 2308, Australia)

  • Natashia Boland

    (School of Mathematical and Physical Science, University of Newcastle, Callaghan, NSW 2308, Australia; H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Faramroze G. Engineer

    (SK Innovation, Seoul, South Korea 03188)

  • Ian Evans

    (Constraint Technologies International, Melbourne, VIC 3000, Australia)

Abstract

A significant drawback of the usual sequential airline scheduling approach is the long lead time between solution of the aircraft routing and aircrew planning problems, and the day of operation. We consider a new approach to airline planning, in which aircraft routes and crew pairings are reoptimized close to the day of operations, via solution of an integrated aircraft routing, crew pairing, and tail assignment problem. Instead of scheduling routes for generic aircraft, we generate routes for each, individual, aircraft given its current location, maintenance, and flying history, while also respecting its individual maintenance requirements. New pairings for crews are planned so as to lie within the work periods given in their roster. This allows aircraft routes and pairings to be designed based on more up-to-date information. By solving an integrated problem, the option of increasing robustness of the resulting schedule by keeping crews and aircraft on the same connections when the connection time is not long can be included in the optimization objective. The problem is formulated as a branch-and-price model with a pricing problem (PP) for each aircraft and each group of crews having the same work period availability and base. We develop two strategies to address the challenge of solving the large number of PPs that result. The feasibility of this approach is demonstrated using real airline data from an Australian domestic airline.

Suggested Citation

  • Sebastian Ruther & Natashia Boland & Faramroze G. Engineer & Ian Evans, 2017. "Integrated Aircraft Routing, Crew Pairing, and Tail Assignment: Branch-and-Price with Many Pricing Problems," Transportation Science, INFORMS, vol. 51(1), pages 177-195, February.
  • Handle: RePEc:inm:ortrsc:v:51:y:2017:i:1:p:177-195
    DOI: 10.1287/trsc.2015.0664
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2015.0664
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2015.0664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Diego Klabjan, 2005. "Large-Scale Models in the Airline Industry," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 163-195, Springer.
    2. Richard Freling & Ramon Lentink & Albert Wagelmans, 2004. "A Decision Support System for Crew Planning in Passenger Transportation Using a Flexible Branch-and-Price Algorithm," Annals of Operations Research, Springer, vol. 127(1), pages 203-222, March.
    3. Jean-François Cordeau & Goran Stojković & François Soumis & Jacques Desrosiers, 2001. "Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling," Transportation Science, INFORMS, vol. 35(4), pages 375-388, November.
    4. Sami Gabteni & Mattias Grönkvist, 2009. "Combining column generation and constraint programming to solve the tail assignment problem," Annals of Operations Research, Springer, vol. 171(1), pages 61-76, October.
    5. Saddoune, Mohammed & Desaulniers, Guy & Elhallaoui, Issmail & Soumis, François, 2011. "Integrated airline crew scheduling: A bi-dynamic constraint aggregation method using neighborhoods," European Journal of Operational Research, Elsevier, vol. 212(3), pages 445-454, August.
    6. Hatem Ben Amor & Jacques Desrosiers & José Manuel Valério de Carvalho, 2006. "Dual-Optimal Inequalities for Stabilized Column Generation," Operations Research, INFORMS, vol. 54(3), pages 454-463, June.
    7. Hai Jiang & Cynthia Barnhart, 2009. "Dynamic Airline Scheduling," Transportation Science, INFORMS, vol. 43(3), pages 336-354, August.
    8. Michel Gamache & François Soumis & Daniel Villeneuve & Jacques Desrosiers & Éric Gélinas, 1998. "The Preferential Bidding System at Air Canada," Transportation Science, INFORMS, vol. 32(3), pages 246-255, August.
    9. Michelle Dunbar & Gary Froyland & Cheng-Lung Wu, 2012. "Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework," Transportation Science, INFORMS, vol. 46(2), pages 204-216, May.
    10. Issmail Elhallaoui & Daniel Villeneuve & François Soumis & Guy Desaulniers, 2005. "Dynamic Aggregation of Set-Partitioning Constraints in Column Generation," Operations Research, INFORMS, vol. 53(4), pages 632-645, August.
    11. R. E. Marsten & W. W. Hogan & J. W. Blankenship, 1975. "The B oxstep Method for Large-Scale Optimization," Operations Research, INFORMS, vol. 23(3), pages 389-405, June.
    12. Amy Mainville Cohn & Cynthia Barnhart, 2003. "Improving Crew Scheduling by Incorporating Key Maintenance Routing Decisions," Operations Research, INFORMS, vol. 51(3), pages 387-396, June.
    13. C. Arbib & F. Marinelli, 2009. "Exact and Asymptotically Exact Solutions for a Class of Assortment Problems," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 13-25, February.
    14. Michel Gamache & François Soumis & Gérald Marquis & Jacques Desrosiers, 1999. "A Column Generation Approach for Large-Scale Aircrew Rostering Problems," Operations Research, INFORMS, vol. 47(2), pages 247-263, April.
    15. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    16. Heykel Achour & Michel Gamache & François Soumis & Guy Desaulniers, 2007. "An Exact Solution Approach for the Preferential Bidding System Problem in the Airline Industry," Transportation Science, INFORMS, vol. 41(3), pages 354-365, August.
    17. Hanif D. Sherali & Ebru K. Bish & Xiaomei Zhu, 2005. "Polyhedral Analysis and Algorithms for a Demand-Driven Refleeting Model for Aircraft Assignment," Transportation Science, INFORMS, vol. 39(3), pages 349-366, August.
    18. Daniel Potthoff & Dennis Huisman & Guy Desaulniers, 2010. "Column Generation with Dynamic Duty Selection for Railway Crew Rescheduling," Transportation Science, INFORMS, vol. 44(4), pages 493-505, November.
    19. Gerald G. Brown & Robert F. Dell & R. Kevin Wood, 1997. "Optimization and Persistence," Interfaces, INFORMS, vol. 27(5), pages 15-37, October.
    20. Cynthia Barnhart & Amy Cohn, 2004. "Airline Schedule Planning: Accomplishments and Opportunities," Manufacturing & Service Operations Management, INFORMS, vol. 6(1), pages 3-22, November.
    21. Benchimol, Pascal & Desaulniers, Guy & Desrosiers, Jacques, 2012. "Stabilized dynamic constraint aggregation for solving set partitioning problems," European Journal of Operational Research, Elsevier, vol. 223(2), pages 360-371.
    22. Rivi Sandhu & Diego Klabjan, 2007. "Integrated Airline Fleeting and Crew-Pairing Decisions," Operations Research, INFORMS, vol. 55(3), pages 439-456, June.
    23. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    24. S. Michel & F. Vanderbeck, 2012. "A Column-Generation Based Tactical Planning Method for Inventory Routing," Operations Research, INFORMS, vol. 60(2), pages 382-397, April.
    25. Warburg, Valdemar & Gotsæd Hansen, Troels & Larsen, Allan & Norman, Hans & Andersson, Erik, 2008. "Dynamic airline scheduling: An analysis of the potentials of refleeting and retiming," Journal of Air Transport Management, Elsevier, vol. 14(4), pages 163-167.
    26. Diego Klabjan & Ellis L. Johnson & George L. Nemhauser & Eric Gelman & Srini Ramaswamy, 2002. "Airline Crew Scheduling with Time Windows and Plane-Count Constraints," Transportation Science, INFORMS, vol. 36(3), pages 337-348, August.
    27. Gerald G. Brown & Kelly J. Cormican & Siriphong Lawphongpanich & Daniel B. Widdis, 1997. "Optimizing submarine berthing with a persistence incentive," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(4), pages 301-318, June.
    28. Lapp, Marcial & Wikenhauser, Florian, 2012. "Incorporating aircraft efficiency measures into the tail assignment problem," Journal of Air Transport Management, Elsevier, vol. 19(C), pages 25-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Xin & Chung, Sai-Ho & Ji, Ping & Sheu, Jiuh-Biing, 2022. "Individual scheduling approach for multi-class airline cabin crew with manpower requirement heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    2. Yang, Huijuan & Buire, Clara & Delahaye, Daniel & Le, Meilong, 2024. "A heuristic-based multi-objective flight schedule generation framework for airline connectivity optimisation in bank structure: An empirical study on Air China in Chengdu," Journal of Air Transport Management, Elsevier, vol. 116(C).
    3. Wen, Xin & Ma, Hoi-Lam & Chung, Sai-Ho & Khan, Waqar Ahmed, 2020. "Robust airline crew scheduling with flight flying time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    4. He, Yonghuan & Ma, Hoi-Lam & Park, Woo-Yong & Liu, Shi Qiang & Chung, Sai-Ho, 2023. "Maximizing robustness of aircraft routing with heterogeneous maintenance tasks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    5. Ma, Hoi-Lam & Sun, Yige & Chung, Sai-Ho & Chan, Hing Kai, 2022. "Tackling uncertainties in aircraft maintenance routing: A review of emerging technologies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    6. Ben Ahmed, Mohamed & Zeghal Mansour, Farah & Haouari, Mohamed, 2018. "Robust integrated maintenance aircraft routing and crew pairing," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 15-31.
    7. Xu, Yifan & Adler, Nicole & Wandelt, Sebastian & Sun, Xiaoqian, 2024. "Competitive integrated airline schedule design and fleet assignment," European Journal of Operational Research, Elsevier, vol. 314(1), pages 32-50.
    8. Zhu, Waiming & Hu, Xiaoxuan & Pei, Jun & Pardalos, Panos M., 2024. "Minimizing the total travel distance for the locker-based drone delivery: A branch-and-cut-based method," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    9. Carlos Lagos & Felipe Delgado & Mathias A. Klapp, 2020. "Dynamic Optimization for Airline Maintenance Operations," Transportation Science, INFORMS, vol. 54(4), pages 998-1015, July.
    10. Wen, Xin & Sun, Xuting & Ma, Hoi-Lam & Sun, Yige, 2022. "A column generation approach for operational flight scheduling and aircraft maintenance routing," Journal of Air Transport Management, Elsevier, vol. 105(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atoosa Kasirzadeh & Mohammed Saddoune & François Soumis, 2017. "Airline crew scheduling: models, algorithms, and data sets," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 111-137, June.
    2. Mohammed Saddoune & Guy Desaulniers & Issmail Elhallaoui & François Soumis, 2012. "Integrated Airline Crew Pairing and Crew Assignment by Dynamic Constraint Aggregation," Transportation Science, INFORMS, vol. 46(1), pages 39-55, February.
    3. Ben Ahmed, Mohamed & Zeghal Mansour, Farah & Haouari, Mohamed, 2018. "Robust integrated maintenance aircraft routing and crew pairing," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 15-31.
    4. Oliver Faust & Jochen Gönsch & Robert Klein, 2017. "Demand-Oriented Integrated Scheduling for Point-to-Point Airlines," Transportation Science, INFORMS, vol. 51(1), pages 196-213, February.
    5. Valentina Cacchiani & Juan-José Salazar-González, 2017. "Optimal Solutions to a Real-World Integrated Airline Scheduling Problem," Transportation Science, INFORMS, vol. 51(1), pages 250-268, February.
    6. Vahid Zeighami & François Soumis, 2019. "Combining Benders’ Decomposition and Column Generation for Integrated Crew Pairing and Personalized Crew Assignment Problems," Transportation Science, INFORMS, vol. 53(5), pages 1479-1499, September.
    7. Başdere, Mehmet & Bilge, Ümit, 2014. "Operational aircraft maintenance routing problem with remaining time consideration," European Journal of Operational Research, Elsevier, vol. 235(1), pages 315-328.
    8. Zeighami, Vahid & Saddoune, Mohammed & Soumis, François, 2020. "Alternating Lagrangian decomposition for integrated airline crew scheduling problem," European Journal of Operational Research, Elsevier, vol. 287(1), pages 211-224.
    9. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "An Integrated Approach for Airline Flight Selection and Timing, Fleet Assignment, and Aircraft Routing," Transportation Science, INFORMS, vol. 47(4), pages 455-476, November.
    10. Liang, Zhe & Feng, Yuan & Zhang, Xiaoning & Wu, Tao & Chaovalitwongse, Wanpracha Art, 2015. "Robust weekly aircraft maintenance routing problem and the extension to the tail assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 238-259.
    11. Mohamed Haouari & Farah Zeghal Mansour & Hanif D. Sherali, 2019. "A New Compact Formulation for the Daily Crew Pairing Problem," Transportation Science, INFORMS, vol. 53(3), pages 811-828, May.
    12. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    13. Mohamed Haouari & Shengzhi Shao & Hanif D. Sherali, 2013. "A Lifted Compact Formulation for the Daily Aircraft Maintenance Routing Problem," Transportation Science, INFORMS, vol. 47(4), pages 508-525, November.
    14. Parmentier, Axel & Meunier, Frédéric, 2020. "Aircraft routing and crew pairing: Updated algorithms at Air France," Omega, Elsevier, vol. 93(C).
    15. Zhe Liang & Wanpracha Art Chaovalitwongse & Huei Chuen Huang & Ellis L. Johnson, 2011. "On a New Rotation Tour Network Model for Aircraft Maintenance Routing Problem," Transportation Science, INFORMS, vol. 45(1), pages 109-120, February.
    16. Wen, Xin & Chung, Sai-Ho & Ji, Ping & Sheu, Jiuh-Biing, 2022. "Individual scheduling approach for multi-class airline cabin crew with manpower requirement heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    17. Chunhua Gao & Ellis Johnson & Barry Smith, 2009. "Integrated Airline Fleet and Crew Robust Planning," Transportation Science, INFORMS, vol. 43(1), pages 2-16, February.
    18. Zhe Liang & Wanpracha Art Chaovalitwongse, 2013. "A Network-Based Model for the Integrated Weekly Aircraft Maintenance Routing and Fleet Assignment Problem," Transportation Science, INFORMS, vol. 47(4), pages 493-507, November.
    19. Boubaker, Khaled & Desaulniers, Guy & Elhallaoui, Issmail, 2010. "Bidline scheduling with equity by heuristic dynamic constraint aggregation," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 50-61, January.
    20. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:51:y:2017:i:1:p:177-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.