IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v314y2024i1p32-50.html
   My bibliography  Save this article

Competitive integrated airline schedule design and fleet assignment

Author

Listed:
  • Xu, Yifan
  • Adler, Nicole
  • Wandelt, Sebastian
  • Sun, Xiaoqian

Abstract

Airline profits are significantly influenced by competitive timetables that match passenger demand to fleet resources. In this research, we develop an integrated, mixed-integer optimization model to derive a comprehensive flight schedule, fleet assignment, and average airfares jointly. Passenger choice behavior is incorporated through a prospect theory-adjusted, nested, multinomial logit model which estimates market share. The competitive fleet assignment and schedule design (CFSD) formulation is embedded in a differentiated Bertrand game, such that each transport operator optimizes their best response function connected through the market share model. To solve the integrated optimization problem efficiently, a hybrid algorithm is developed that combines stabilized column generation with a large neighborhood search algorithm.

Suggested Citation

  • Xu, Yifan & Adler, Nicole & Wandelt, Sebastian & Sun, Xiaoqian, 2024. "Competitive integrated airline schedule design and fleet assignment," European Journal of Operational Research, Elsevier, vol. 314(1), pages 32-50.
  • Handle: RePEc:eee:ejores:v:314:y:2024:i:1:p:32-50
    DOI: 10.1016/j.ejor.2023.09.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723007452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.09.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Surti, Chirag & Celani, Anthony & Gajpal, Yuvraj, 2020. "The newsvendor problem: The role of prospect theory and feedback," European Journal of Operational Research, Elsevier, vol. 287(1), pages 251-261.
    2. de Jong, Gerard & Daly, Andrew & Pieters, Marits & van der Hoorn, Toon, 2007. "The logsum as an evaluation measure: Review of the literature and new results," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 874-889, November.
    3. Parmentier, Axel & Meunier, Frédéric, 2020. "Aircraft routing and crew pairing: Updated algorithms at Air France," Omega, Elsevier, vol. 93(C).
    4. Vikrant Vaze & Cynthia Barnhart, 2012. "Modeling Airline Frequency Competition for Airport Congestion Mitigation," Transportation Science, INFORMS, vol. 46(4), pages 512-535, November.
    5. Adler, Nicole, 2001. "Competition in a deregulated air transportation market," European Journal of Operational Research, Elsevier, vol. 129(2), pages 337-345, March.
    6. Hess, Stephane, 2008. "Treatment of reference alternatives in stated choice surveys for air travel choice behaviour," Journal of Air Transport Management, Elsevier, vol. 14(5), pages 275-279.
    7. Masood Kiarashrad & Seyed Hamid Reza Pasandideh & Mohammad Mohammadi, 2021. "A mixed-integer nonlinear optimization model for integrated flight scheduling, fleet assignment, and ticket pricing in competitive market," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(5), pages 596-607, October.
    8. Wang, Chun-Han & Zhang, Wenzhu & Dai, Yue & Lee, Yu-Ching, 2022. "Frequency competition among airlines on coordinated airports network," European Journal of Operational Research, Elsevier, vol. 297(2), pages 484-495.
    9. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    10. Nuno Antunes Ribeiro & Alexandre Jacquillat & António Pais Antunes, 2019. "A Large-Scale Neighborhood Search Approach to Airport Slot Allocation," Transportation Science, INFORMS, vol. 53(6), pages 1772-1797, November.
    11. Hansen, Mark, 1990. "Airline competition in a hub-dominated environment: An application of noncooperative game theory," Transportation Research Part B: Methodological, Elsevier, vol. 24(1), pages 27-43, February.
    12. Adler, Nicole & Smilowitz, Karen, 2007. "Hub-and-spoke network alliances and mergers: Price-location competition in the airline industry," Transportation Research Part B: Methodological, Elsevier, vol. 41(4), pages 394-409, May.
    13. Cacchiani, Valentina & Salazar-González, Juan-José, 2020. "Heuristic approaches for flight retiming in an integrated airline scheduling problem of a regional carrier," Omega, Elsevier, vol. 91(C).
    14. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A compact optimization model for the tail assignment problem," European Journal of Operational Research, Elsevier, vol. 264(2), pages 548-557.
    15. Luis Cadarso & Vikrant Vaze & Cynthia Barnhart & Ángel Marín, 2017. "Integrated Airline Scheduling: Considering Competition Effects and the Entry of the High Speed Rail," Transportation Science, INFORMS, vol. 51(1), pages 132-154, February.
    16. Brian Rexing & Cynthia Barnhart & Tim Kniker & Ahmad Jarrah & Nirup Krishnamurthy, 2000. "Airline Fleet Assignment with Time Windows," Transportation Science, INFORMS, vol. 34(1), pages 1-20, February.
    17. Swan, William M. & Adler, Nicole, 2006. "Aircraft trip cost parameters: A function of stage length and seat capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(2), pages 105-115, March.
    18. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    19. A. Pessoa & R. Sadykov & E. Uchoa & F. Vanderbeck, 2018. "Automation and Combination of Linear-Programming Based Stabilization Techniques in Column Generation," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 339-360, May.
    20. Lhéritier, Alix & Bocamazo, Michael & Delahaye, Thierry & Acuna-Agost, Rodrigo, 2019. "Airline itinerary choice modeling using machine learning," Journal of choice modelling, Elsevier, vol. 31(C), pages 198-209.
    21. Nicole Adler, 2005. "Hub-Spoke Network Choice Under Competition with an Application to Western Europe," Transportation Science, INFORMS, vol. 39(1), pages 58-72, February.
    22. Kenan, Nabil & Diabat, Ali & Jebali, Aida, 2018. "Codeshare agreements in the integrated aircraft routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 272-295.
    23. Nicolau, Juan Luis, 2011. "Testing prospect theory in airline demand," Journal of Air Transport Management, Elsevier, vol. 17(4), pages 241-243.
    24. Yan, Shangyao & Tang, Ching-Hui & Fu, Tseng-Chih, 2008. "An airline scheduling model and solution algorithms under stochastic demands," European Journal of Operational Research, Elsevier, vol. 190(1), pages 22-39, October.
    25. Xu, Yifan & Wandelt, Sebastian & Sun, Xiaoqian, 2021. "Airline integrated robust scheduling with a variable neighborhood search based heuristic," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 181-203.
    26. Keji Wei & Vikrant Vaze, 2020. "Airline Timetable Development and Fleet Assignment Incorporating Passenger Choice," Transportation Science, INFORMS, vol. 54(1), pages 139-163, January.
    27. João P. Pita & Cynthia Barnhart & António P. Antunes, 2013. "Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion," Transportation Science, INFORMS, vol. 47(4), pages 477-492, November.
    28. Sebastian Ruther & Natashia Boland & Faramroze G. Engineer & Ian Evans, 2017. "Integrated Aircraft Routing, Crew Pairing, and Tail Assignment: Branch-and-Price with Many Pricing Problems," Transportation Science, INFORMS, vol. 51(1), pages 177-195, February.
    29. Hansen, Mark & Liu, Yi, 2015. "Airline competition and market frequency: A comparison of the s-curve and schedule delay models," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 301-317.
    30. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    31. Cynthia Barnhart & Natashia L. Boland & Lloyd W. Clarke & Ellis L. Johnson & George L. Nemhauser & Rajesh G. Shenoi, 1998. "Flight String Models for Aircraft Fleeting and Routing," Transportation Science, INFORMS, vol. 32(3), pages 208-220, August.
    32. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    33. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2010. "Integrated Airline Schedule Design and Fleet Assignment: Polyhedral Analysis and Benders' Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 500-513, November.
    34. Zou, Bo & Hansen, Mark, 2014. "Flight delay impact on airfare and flight frequency: A comprehensive assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 54-74.
    35. Steven A. Morrison, 2001. "Actual, Adjacent, and Potential Competition Estimating the Full Effect of Southwest Airlines," Journal of Transport Economics and Policy, University of Bath, vol. 35(2), pages 239-256, May.
    36. Wei, Wenbin & Hansen, Mark, 2005. "Impact of aircraft size and seat availability on airlines' demand and market share in duopoly markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(4), pages 315-327, July.
    37. Manoj Lohatepanont & Cynthia Barnhart, 2004. "Airline Schedule Planning: Integrated Models and Algorithms for Schedule Design and Fleet Assignment," Transportation Science, INFORMS, vol. 38(1), pages 19-32, February.
    38. Wei, Wenbin & Hansen, Mark, 2006. "An aggregate demand model for air passenger traffic in the hub-and-spoke network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 841-851, December.
    39. Fridström, Lasse & Thune-Larsen, Harald, 1989. "An econometric air travel demand model for the entire conventional domestic network: The case of Norway," Transportation Research Part B: Methodological, Elsevier, vol. 23(3), pages 213-223, June.
    40. Quesnel, Frédéric & Desaulniers, Guy & Soumis, François, 2020. "A branch-and-price heuristic for the crew pairing problem with language constraints," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1040-1054.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Huijuan & Buire, Clara & Delahaye, Daniel & Le, Meilong, 2024. "A heuristic-based multi-objective flight schedule generation framework for airline connectivity optimisation in bank structure: An empirical study on Air China in Chengdu," Journal of Air Transport Management, Elsevier, vol. 116(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelghany, Ahmed & Abdelghany, Khaled & Azadian, Farshid, 2023. "The airline seat capacity allocation problem: An expected marginal profit approach," Journal of Air Transport Management, Elsevier, vol. 112(C).
    2. Birolini, Sebastian & Antunes, António Pais & Cattaneo, Mattia & Malighetti, Paolo & Paleari, Stefano, 2021. "Integrated flight scheduling and fleet assignment with improved supply-demand interactions," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 162-180.
    3. Birolini, Sebastian & Jacquillat, Alexandre & Cattaneo, Mattia & Antunes, António Pais, 2021. "Airline Network Planning: Mixed-integer non-convex optimization with demand–supply interactions," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 100-124.
    4. Xu, Yifan & Wandelt, Sebastian & Sun, Xiaoqian, 2021. "Airline integrated robust scheduling with a variable neighborhood search based heuristic," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 181-203.
    5. Adler, Nicole & Andreana, Gianmarco, 2024. "Aiding airlines for the benefit of whom? An applied game-theoretic approach," European Journal of Operational Research, Elsevier, vol. 314(2), pages 552-564.
    6. Pita, João P. & Adler, Nicole & Antunes, António P., 2014. "Socially-oriented flight scheduling and fleet assignment model with an application to Norway," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 17-32.
    7. João P. Pita & Cynthia Barnhart & António P. Antunes, 2013. "Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion," Transportation Science, INFORMS, vol. 47(4), pages 477-492, November.
    8. Keji Wei & Vikrant Vaze, 2020. "Airline Timetable Development and Fleet Assignment Incorporating Passenger Choice," Transportation Science, INFORMS, vol. 54(1), pages 139-163, January.
    9. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C. & Fu, Xiaowen, 2010. "Optimal route allocation in a liberalizing airline market," Transportation Research Part B: Methodological, Elsevier, vol. 44(7), pages 886-902, August.
    10. Birolini, Sebastian & Besana, Emanuele & Cattaneo, Mattia & Redondi, Renato & Sallan, Jose Maria, 2022. "An integrated connection planning and passenger allocation model for low-cost carriers," Journal of Air Transport Management, Elsevier, vol. 99(C).
    11. Antunes, António P. & Santos, Miguel G. & Pita, João P. & Menezes, António G., 2018. "Study on the evolution of the air transport network of the Azores," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 837-851.
    12. Glomb, Lukas & Liers, Frauke & Rösel, Florian, 2023. "Optimizing integrated aircraft assignment and turnaround handling," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1051-1071.
    13. Masood Kiarashrad & Seyed Hamid Reza Pasandideh & Mohammad Mohammadi, 2021. "A mixed-integer nonlinear optimization model for integrated flight scheduling, fleet assignment, and ticket pricing in competitive market," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(5), pages 596-607, October.
    14. Okan Örsan Özener & Melda Örmeci Matoğlu & Güneş Erdoğan & Mohamed Haouari & Hasan Sözer, 2017. "Solving a large-scale integrated fleet assignment and crew pairing problem," Annals of Operations Research, Springer, vol. 253(1), pages 477-500, June.
    15. Oliver Faust & Jochen Gönsch & Robert Klein, 2017. "Demand-Oriented Integrated Scheduling for Point-to-Point Airlines," Transportation Science, INFORMS, vol. 51(1), pages 196-213, February.
    16. Gupta, Gautam & Goodchild, Anne & Hansen, Mark, 2011. "A competitive, charter air-service planning model for student athlete travel," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 128-149, January.
    17. Presto, Felix & Gollnick, Volker & Lau, Alexander & Lütjens, Klaus, 2022. "Flight frequency regulation and its temporal implications," Transport Policy, Elsevier, vol. 116(C), pages 106-118.
    18. Hansen, Mark & Liu, Yi, 2015. "Airline competition and market frequency: A comparison of the s-curve and schedule delay models," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 301-317.
    19. Adler, Nicole & Pels, Eric & Nash, Chris, 2010. "High-speed rail and air transport competition: Game engineering as tool for cost-benefit analysis," Transportation Research Part B: Methodological, Elsevier, vol. 44(7), pages 812-833, August.
    20. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:314:y:2024:i:1:p:32-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.