IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v54y2020i4p998-1015.html
   My bibliography  Save this article

Dynamic Optimization for Airline Maintenance Operations

Author

Listed:
  • Carlos Lagos

    (School of Engineering, Pontificia Universidad Católica de Chile, Santiago 9999, Chile)

  • Felipe Delgado

    (School of Engineering, Pontificia Universidad Católica de Chile, Santiago 9999, Chile)

  • Mathias A. Klapp

    (School of Engineering, Pontificia Universidad Católica de Chile, Santiago 9999, Chile)

Abstract

The occurrence of unexpected aircraft maintenance tasks can produce expensive changes in an airline’s operation. When it comes to critical tasks, it might even cancel programmed flights. Despite this, the challenge of scheduling aircraft maintenance operations under uncertainty has received limited attention in the scientific literature. We study a dynamic airline maintenance scheduling problem, which daily decides the set of aircraft to maintain and the set of pending tasks to execute in each aircraft. The objective is to minimize the expected costs of expired maintenance tasks over the operating horizon. To increase flexibility and reduce costs, we integrate maintenance scheduling with tail assignment decisions. We formulate our problem as a Markov decision process and design dynamic policies based on approximate dynamic programming, including value function approximation, rolling horizon techniques, and a hybrid policy between the latter two that delivers the best results. In a case study based on LATAM airline, we show the value of dynamic optimization by testing our best policies against a simple airline decision rule and a deterministic relaxation with perfect future information. We suggest to schedule tasks requiring less resources first to increase utilization of residual maintenance capacity. Finally, we observe strong economies of scale when sharing maintenance resources between multiple airlines.

Suggested Citation

  • Carlos Lagos & Felipe Delgado & Mathias A. Klapp, 2020. "Dynamic Optimization for Airline Maintenance Operations," Transportation Science, INFORMS, vol. 54(4), pages 998-1015, July.
  • Handle: RePEc:inm:ortrsc:v:54:y:2020:i:4:p:998-1015
    DOI: 10.1287/trsc.2020.0984
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2020.0984
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2020.0984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Başdere, Mehmet & Bilge, Ümit, 2014. "Operational aircraft maintenance routing problem with remaining time consideration," European Journal of Operational Research, Elsevier, vol. 235(1), pages 315-328.
    2. Maher, Stephen J. & Desaulniers, Guy & Soumis, François, 2018. "The daily tail assignment problem under operational uncertainty using look-ahead maintenance constraints," European Journal of Operational Research, Elsevier, vol. 264(2), pages 534-547.
    3. Ram Gopalan & Kalyan Talluri, 1998. "Mathematical models in airline schedule planning: A survey," Annals of Operations Research, Springer, vol. 76(0), pages 155-185, January.
    4. Liang, Zhe & Feng, Yuan & Zhang, Xiaoning & Wu, Tao & Chaovalitwongse, Wanpracha Art, 2015. "Robust weekly aircraft maintenance routing problem and the extension to the tail assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 238-259.
    5. Moudani, Walid El & Mora-Camino, Félix, 2000. "A dynamic approach for aircraft assignment and maintenance scheduling by airlines," Journal of Air Transport Management, Elsevier, vol. 6(4), pages 233-237.
    6. Gavranis, Andreas & Kozanidis, George, 2015. "An exact solution algorithm for maximizing the fleet availability of a unit of aircraft subject to flight and maintenance requirements," European Journal of Operational Research, Elsevier, vol. 242(2), pages 631-643.
    7. Sebastian Ruther & Natashia Boland & Faramroze G. Engineer & Ian Evans, 2017. "Integrated Aircraft Routing, Crew Pairing, and Tail Assignment: Branch-and-Price with Many Pricing Problems," Transportation Science, INFORMS, vol. 51(1), pages 177-195, February.
    8. Mohamed Haouari & Shengzhi Shao & Hanif D. Sherali, 2013. "A Lifted Compact Formulation for the Daily Aircraft Maintenance Routing Problem," Transportation Science, INFORMS, vol. 47(4), pages 508-525, November.
    9. David B. Brown & James E. Smith & Peng Sun, 2010. "Information Relaxations and Duality in Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 58(4-part-1), pages 785-801, August.
    10. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    11. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    12. Sriram, Chellappan & Haghani, Ali, 2003. "An optimization model for aircraft maintenance scheduling and re-assignment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 29-48, January.
    13. Safaei, Nima & Jardine, Andrew K.S., 2018. "Aircraft routing with generalized maintenance constraints," Omega, Elsevier, vol. 80(C), pages 111-122.
    14. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
    15. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    16. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A compact optimization model for the tail assignment problem," European Journal of Operational Research, Elsevier, vol. 264(2), pages 548-557.
    17. Lapp, Marcial & Wikenhauser, Florian, 2012. "Incorporating aircraft efficiency measures into the tail assignment problem," Journal of Air Transport Management, Elsevier, vol. 19(C), pages 25-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tseremoglou, Iordanis & Santos, Bruno F., 2024. "Condition-Based Maintenance scheduling of an aircraft fleet under partial observability: A Deep Reinforcement Learning approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. He, Yonghuan & Ma, Hoi-Lam & Park, Woo-Yong & Liu, Shi Qiang & Chung, Sai-Ho, 2023. "Maximizing robustness of aircraft routing with heterogeneous maintenance tasks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    3. Shaukat, Syed & Katscher, Mathias & Wu, Cheng-Lung & Delgado, Felipe & Larrain, Homero, 2020. "Aircraft line maintenance scheduling and optimisation," Journal of Air Transport Management, Elsevier, vol. 89(C).
    4. van Kessel, Paul J. & Freeman, Floris C. & Santos, Bruno F., 2023. "Airline maintenance task rescheduling in a disruptive environment," European Journal of Operational Research, Elsevier, vol. 308(2), pages 605-621.
    5. Ma, Hoi-Lam & Sun, Yige & Chung, Sai-Ho & Chan, Hing Kai, 2022. "Tackling uncertainties in aircraft maintenance routing: A review of emerging technologies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    6. Cha, Guesik & Park, Junseok & Moon, Ilkyeong, 2023. "Military aircraft flight and maintenance planning model considering heterogeneous maintenance tasks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    7. Guglielmo Lulli & Amedeo Odoni & Bruno F. Santos, 2020. "Introduction to the Special Section: Air Transportation Systems Planning and Operations Under Uncertainty," Transportation Science, INFORMS, vol. 54(4), pages 855-857, July.
    8. Deng, Qichen & Santos, Bruno F., 2022. "Lookahead approximate dynamic programming for stochastic aircraft maintenance check scheduling optimization," European Journal of Operational Research, Elsevier, vol. 299(3), pages 814-833.
    9. Yin, Mingang & Liu, Yu & Liu, Shuntao & Chen, Yiming & Yan, Yutao, 2023. "Scheduling heterogeneous repair channels in selective maintenance of multi-state systems with maintenance duration uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    10. Saltzman, Robert M. & Stern, Helman I., 2022. "The multi-day aircraft maintenance routing problem," Journal of Air Transport Management, Elsevier, vol. 102(C).
    11. Sciau, Jean-Baptiste & Goyon, Agathe & Sarazin, Alexandre & Bascans, Jérémy & Prud’homme, Charles & Lorca, Xavier, 2024. "Using constraint programming to address the operational aircraft line maintenance scheduling problem," Journal of Air Transport Management, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yonghuan & Ma, Hoi-Lam & Park, Woo-Yong & Liu, Shi Qiang & Chung, Sai-Ho, 2023. "Maximizing robustness of aircraft routing with heterogeneous maintenance tasks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    2. Sciau, Jean-Baptiste & Goyon, Agathe & Sarazin, Alexandre & Bascans, Jérémy & Prud’homme, Charles & Lorca, Xavier, 2024. "Using constraint programming to address the operational aircraft line maintenance scheduling problem," Journal of Air Transport Management, Elsevier, vol. 115(C).
    3. Shaukat, Syed & Katscher, Mathias & Wu, Cheng-Lung & Delgado, Felipe & Larrain, Homero, 2020. "Aircraft line maintenance scheduling and optimisation," Journal of Air Transport Management, Elsevier, vol. 89(C).
    4. Safaei, Nima & Jardine, Andrew K.S., 2018. "Aircraft routing with generalized maintenance constraints," Omega, Elsevier, vol. 80(C), pages 111-122.
    5. Saltzman, Robert M. & Stern, Helman I., 2022. "The multi-day aircraft maintenance routing problem," Journal of Air Transport Management, Elsevier, vol. 102(C).
    6. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A multi-criteria repair/recovery framework for the tail assignment problem in airlines," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 137-151.
    7. Deng, Qichen & Santos, Bruno F., 2022. "Lookahead approximate dynamic programming for stochastic aircraft maintenance check scheduling optimization," European Journal of Operational Research, Elsevier, vol. 299(3), pages 814-833.
    8. Liang, Zhe & Feng, Yuan & Zhang, Xiaoning & Wu, Tao & Chaovalitwongse, Wanpracha Art, 2015. "Robust weekly aircraft maintenance routing problem and the extension to the tail assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 238-259.
    9. Maher, Stephen J. & Desaulniers, Guy & Soumis, François, 2018. "The daily tail assignment problem under operational uncertainty using look-ahead maintenance constraints," European Journal of Operational Research, Elsevier, vol. 264(2), pages 534-547.
    10. Eltoukhy, Abdelrahman E.E. & Wang, Z.X. & Chan, Felix T.S. & Fu, X., 2019. "Data analytics in managing aircraft routing and maintenance staffing with price competition by a Stackelberg-Nash game model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 143-168.
    11. Deng, Qichen & Santos, Bruno F. & Curran, Richard, 2020. "A practical dynamic programming based methodology for aircraft maintenance check scheduling optimization," European Journal of Operational Research, Elsevier, vol. 281(2), pages 256-273.
    12. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A compact optimization model for the tail assignment problem," European Journal of Operational Research, Elsevier, vol. 264(2), pages 548-557.
    13. Ma, Hoi-Lam & Sun, Yige & Chung, Sai-Ho & Chan, Hing Kai, 2022. "Tackling uncertainties in aircraft maintenance routing: A review of emerging technologies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    14. Sanchez, David Torres & Boyacı, Burak & Zografos, Konstantinos G., 2020. "An optimisation framework for airline fleet maintenance scheduling with tail assignment considerations," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 142-164.
    15. Xiao, Fan & Guo, Siqi & Huang, Lin & Huang, Lei & Liang, Zhe, 2022. "Integrated aircraft tail assignment and cargo routing problem with through cargo consideration," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 328-351.
    16. Ben Ahmed, Mohamed & Zeghal Mansour, Farah & Haouari, Mohamed, 2018. "Robust integrated maintenance aircraft routing and crew pairing," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 15-31.
    17. Xu, Yifan & Adler, Nicole & Wandelt, Sebastian & Sun, Xiaoqian, 2024. "Competitive integrated airline schedule design and fleet assignment," European Journal of Operational Research, Elsevier, vol. 314(1), pages 32-50.
    18. Zhe Liang & Wanpracha Art Chaovalitwongse, 2013. "A Network-Based Model for the Integrated Weekly Aircraft Maintenance Routing and Fleet Assignment Problem," Transportation Science, INFORMS, vol. 47(4), pages 493-507, November.
    19. Xu, Yifan & Wandelt, Sebastian & Sun, Xiaoqian, 2021. "Airline integrated robust scheduling with a variable neighborhood search based heuristic," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 181-203.
    20. Wen, Xin & Sun, Xuting & Ma, Hoi-Lam & Sun, Yige, 2022. "A column generation approach for operational flight scheduling and aircraft maintenance routing," Journal of Air Transport Management, Elsevier, vol. 105(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:54:y:2020:i:4:p:998-1015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.