IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v41y2007i2p238-252.html
   My bibliography  Save this article

Integration of the Load-Matching and Routing Problem with Equipment Balancing for Small Package Carriers

Author

Listed:
  • Amy Cohn

    (Industrial and Operations Engineering, University of Michigan, 2797 IOE Building, 1205 Beal Avenue, Ann Arbor, Michigan 48109)

  • Sarah Root

    (Industrial and Operations Engineering, University of Michigan, 2797 IOE Building, 1205 Beal Avenue, Ann Arbor, Michigan 48109)

  • Alex Wang

    (Industrial and Operations Engineering, University of Michigan, 2797 IOE Building, 1205 Beal Avenue, Ann Arbor, Michigan 48109)

  • Douglas Mohr

    (United Parcel Service, 2311 York Road, Timonium, Maryland 21093)

Abstract

Small package delivery is a multibillion dollar industry with complex planning decisions required to efficiently utilize costly resources and meet tight time requirements. The planning process is typically decomposed into sequential subproblems to establish tractability. This decomposition can greatly degrade solution quality. This paper therefore considers the integration of two closely related key subproblems: load matching and routing and equipment balancing . First, we identify critical challenges faced in trying to solve these problems. Then we present a novel modeling approach to address these challenges. Finally, we conclude with computational results from United Parcel Service, the world’s largest package delivery company, demonstrating an improvement of approximately 5% over the company’s existing methods for solving this pair of problems.

Suggested Citation

  • Amy Cohn & Sarah Root & Alex Wang & Douglas Mohr, 2007. "Integration of the Load-Matching and Routing Problem with Equipment Balancing for Small Package Carriers," Transportation Science, INFORMS, vol. 41(2), pages 238-252, May.
  • Handle: RePEc:inm:ortrsc:v:41:y:2007:i:2:p:238-252
    DOI: 10.1287/trsc.1060.0174
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1060.0174
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1060.0174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeff L. Kennington, 1978. "A Survey of Linear Cost Multicommodity Network Flows," Operations Research, INFORMS, vol. 26(2), pages 209-236, April.
    2. Brian Rexing & Cynthia Barnhart & Tim Kniker & Ahmad Jarrah & Nirup Krishnamurthy, 2000. "Airline Fleet Assignment with Time Windows," Transportation Science, INFORMS, vol. 34(1), pages 1-20, February.
    3. Jean-François Cordeau & Goran Stojković & François Soumis & Jacques Desrosiers, 2001. "Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling," Transportation Science, INFORMS, vol. 35(4), pages 375-388, November.
    4. François Vanderbeck, 2000. "On Dantzig-Wolfe Decomposition in Integer Programming and ways to Perform Branching in a Branch-and-Price Algorithm," Operations Research, INFORMS, vol. 48(1), pages 111-128, February.
    5. Alexandra M. Newman & Candace Arai Yano, 2000. "Scheduling Direct and Indirect Trains and Containers in an Intermodal Setting," Transportation Science, INFORMS, vol. 34(3), pages 256-270, August.
    6. Kuby, Michael J. & Gray, Robert Gordon, 1993. "The hub network design problem with stopovers and feeders: The case of Federal Express," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(1), pages 1-12, January.
    7. Amy Mainville Cohn & Cynthia Barnhart, 2003. "Improving Crew Scheduling by Incorporating Key Maintenance Routing Decisions," Operations Research, INFORMS, vol. 51(3), pages 387-396, June.
    8. Jean-François Cordeau & François Soumis & Jacques Desrosiers, 2000. "A Benders Decomposition Approach for the Locomotive and Car Assignment Problem," Transportation Science, INFORMS, vol. 34(2), pages 133-149, May.
    9. Castro, J. & Nabona, N., 1996. "An implementation of linear and nonlinear multicommodity network flows," European Journal of Operational Research, Elsevier, vol. 92(1), pages 37-53, July.
    10. Marco E. Lübbecke & Uwe T. Zimmermann, 2003. "Engine Routing and Scheduling at Industrial In-Plant Railroads," Transportation Science, INFORMS, vol. 37(2), pages 183-197, May.
    11. Cynthia Barnhart & Christopher A. Hane & Pamela H. Vance, 2000. "Using Branch-and-Price-and-Cut to Solve Origin-Destination Integer Multicommodity Flow Problems," Operations Research, INFORMS, vol. 48(2), pages 318-326, April.
    12. Manoj Lohatepanont & Cynthia Barnhart, 2004. "Airline Schedule Planning: Integrated Models and Algorithms for Schedule Design and Fleet Assignment," Transportation Science, INFORMS, vol. 38(1), pages 19-32, February.
    13. Peiling Wu & Joseph C. Hartman & George R. Wilson, 2005. "An Integrated Model and Solution Approach for Fleet Sizing with Heterogeneous Assets," Transportation Science, INFORMS, vol. 39(1), pages 87-103, February.
    14. El-Darzi, E & Mitra, G, 1990. "Set covering and set partitioning: A collection of test problems," Omega, Elsevier, vol. 18(2), pages 195-201.
    15. Diego Klabjan & Ellis L. Johnson & George L. Nemhauser & Eric Gelman & Srini Ramaswamy, 2002. "Airline Crew Scheduling with Time Windows and Plane-Count Constraints," Transportation Science, INFORMS, vol. 36(3), pages 337-348, August.
    16. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    17. Ilfat Ghamlouche & Teodor Gabriel Crainic & Michel Gendreau, 2003. "Cycle-Based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design," Operations Research, INFORMS, vol. 51(4), pages 655-667, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuliano, Genevieve & Showalter, Catherine & Yuan, Quan & Zhang, Rui, 2018. "Managing the Impacts of Freight in California," Institute of Transportation Studies, Working Paper Series qt6614p4js, Institute of Transportation Studies, UC Davis.
    2. Sarah Root & Amy Cohn, 2008. "A novel modeling approach for express package carrier planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 670-683, October.
    3. Werners, Brigitte & Wülfing, Thomas, 2010. "Robust optimization of internal transports at a parcel sorting center operated by Deutsche Post World Net," European Journal of Operational Research, Elsevier, vol. 201(2), pages 419-426, March.
    4. Ada Y. Barlatt & Amy Cohn & Oleg Gusikhin & Yakov Fradkin & Rich Davidson & John Batey, 2012. "Ford Motor Company Implements Integrated Planning and Scheduling in a Complex Automotive Manufacturing Environment," Interfaces, INFORMS, vol. 42(5), pages 478-491, October.
    5. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    6. Yan Cheng Hsu & Jose L. Walteros & Rajan Batta, 2020. "Solving the petroleum replenishment and routing problem with variable demands and time windows," Annals of Operations Research, Springer, vol. 294(1), pages 9-46, November.
    7. Le, Tho V. & Ukkusuri, Satish V. & Xue, Jiawei & Van Woensel, Tom, 2021. "Designing pricing and compensation schemes by integrating matching and routing models for crowd-shipping systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    8. Jose L. Andrade-Pineda & Pedro L. Gonzalez-R & Jose M. Framinan, 2013. "A Decision-Making Tool for a Regional Network of Clinical Laboratories," Interfaces, INFORMS, vol. 43(4), pages 360-372, August.
    9. Zhang, Huili & Luo, Kelin & Xu, Yao & Xu, Yinfeng & Tong, Weitian, 2022. "Online crowdsourced truck delivery using historical information," European Journal of Operational Research, Elsevier, vol. 301(2), pages 486-501.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Faust & Jochen Gönsch & Robert Klein, 2017. "Demand-Oriented Integrated Scheduling for Point-to-Point Airlines," Transportation Science, INFORMS, vol. 51(1), pages 196-213, February.
    2. Sarah Root & Amy Cohn, 2008. "A novel modeling approach for express package carrier planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 670-683, October.
    3. Okan Örsan Özener & Melda Örmeci Matoğlu & Güneş Erdoğan & Mohamed Haouari & Hasan Sözer, 2017. "Solving a large-scale integrated fleet assignment and crew pairing problem," Annals of Operations Research, Springer, vol. 253(1), pages 477-500, June.
    4. Chunhua Gao & Ellis Johnson & Barry Smith, 2009. "Integrated Airline Fleet and Crew Robust Planning," Transportation Science, INFORMS, vol. 43(1), pages 2-16, February.
    5. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "An Integrated Approach for Airline Flight Selection and Timing, Fleet Assignment, and Aircraft Routing," Transportation Science, INFORMS, vol. 47(4), pages 455-476, November.
    6. Zhe Liang & Wanpracha Art Chaovalitwongse, 2013. "A Network-Based Model for the Integrated Weekly Aircraft Maintenance Routing and Fleet Assignment Problem," Transportation Science, INFORMS, vol. 47(4), pages 493-507, November.
    7. Valentina Cacchiani & Juan-José Salazar-González, 2017. "Optimal Solutions to a Real-World Integrated Airline Scheduling Problem," Transportation Science, INFORMS, vol. 51(1), pages 250-268, February.
    8. Michelle Dunbar & Gary Froyland & Cheng-Lung Wu, 2012. "Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework," Transportation Science, INFORMS, vol. 46(2), pages 204-216, May.
    9. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    10. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    11. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    12. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    13. Mohamed Haouari & Farah Zeghal Mansour & Hanif D. Sherali, 2019. "A New Compact Formulation for the Daily Crew Pairing Problem," Transportation Science, INFORMS, vol. 53(3), pages 811-828, May.
    14. Zeighami, Vahid & Saddoune, Mohammed & Soumis, François, 2020. "Alternating Lagrangian decomposition for integrated airline crew scheduling problem," European Journal of Operational Research, Elsevier, vol. 287(1), pages 211-224.
    15. Mohammed Saddoune & Guy Desaulniers & Issmail Elhallaoui & François Soumis, 2012. "Integrated Airline Crew Pairing and Crew Assignment by Dynamic Constraint Aggregation," Transportation Science, INFORMS, vol. 46(1), pages 39-55, February.
    16. Khodakaram Salimifard & Sara Bigharaz, 2022. "The multicommodity network flow problem: state of the art classification, applications, and solution methods," Operational Research, Springer, vol. 22(1), pages 1-47, March.
    17. Amy Cohn, 2006. "Composite-variable modeling for service parts logistics," Annals of Operations Research, Springer, vol. 144(1), pages 17-32, April.
    18. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    19. F M Zeghal & M Haouari & H D Sherali & N Aissaoui, 2011. "Flexible aircraft fleeting and routing at TunisAir," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 368-380, February.
    20. Zhe Liang & Wanpracha Art Chaovalitwongse & Huei Chuen Huang & Ellis L. Johnson, 2011. "On a New Rotation Tour Network Model for Aircraft Maintenance Routing Problem," Transportation Science, INFORMS, vol. 45(1), pages 109-120, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:41:y:2007:i:2:p:238-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.