IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v48y2000i1p111-128.html
   My bibliography  Save this article

On Dantzig-Wolfe Decomposition in Integer Programming and ways to Perform Branching in a Branch-and-Price Algorithm

Author

Listed:
  • François Vanderbeck

    (Mathématiques Appliquées Bordeaux, Université Bordeaux 1, 351, Cours de la Liberation, 33405 Talence Cedex, France)

Abstract

Dantzig-Wolfe decomposition as applied to an integer program is a specific form of problem reformulation that aims at providing a tighter linear programming relaxation bound. The reformulation gives rise to an integer master problem, whose typically large number of variables is dealt with implicitly by using an integer programming column generation procedure, also known as branch-and-price algorithm. There is a large class of integer programs that are well suited for this solution technique. In this paper, we propose to base the Dantzig-Wolfe decomposition of an integer program on the discretization of the integer polyhedron associated with a subsystem of constraints (as opposed to its convexification). This allows us to formulate the integrality restriction directly on the master variables and sets a theoretical framework for dealing with specific issues such as branching or the introduction of cutting planes in the master. We discuss specific branching schemes and their effect on the structure of the column generation subproblem. We give theoretical bounds on the complexity of the separation process and the extent of the modifications to the column generation subproblem. Our computational tests on the cutting stock problem and a generalisation---the cutting strip problem---show that, in practice, all fractional solutions can be eliminated using branching rules that preserve the tractability of the subproblem, but there is a trade-off between branching efficiency and subproblem tractability.

Suggested Citation

  • François Vanderbeck, 2000. "On Dantzig-Wolfe Decomposition in Integer Programming and ways to Perform Branching in a Branch-and-Price Algorithm," Operations Research, INFORMS, vol. 48(1), pages 111-128, February.
  • Handle: RePEc:inm:oropre:v:48:y:2000:i:1:p:111-128
    DOI: 10.1287/opre.48.1.111.12453
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.48.1.111.12453
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.48.1.111.12453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. SUTTER, Alain & VANDERBECK, François & WOLSEY, Laurence, 1998. "Optimal placement of add/drop multiplexers: heuristic and exact algorithms," LIDAM Reprints CORE 1340, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    3. Vanderbeck, F. & Wolsey, L. A., 1996. "An exact algorithm for IP column generation," LIDAM Reprints CORE 1242, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Martin Savelsbergh, 1997. "A Branch-and-Price Algorithm for the Generalized Assignment Problem," Operations Research, INFORMS, vol. 45(6), pages 831-841, December.
    5. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    6. Alain S. Sutter & François Vanderbeck & Laurence Wolsey, 1998. "Optimal Placement of Add/Drop Multiplexers: Heuristic and Exact Algorithms," Operations Research, INFORMS, vol. 46(5), pages 719-728, October.
    7. R. Kipp Martin, 1987. "Generating Alternative Mixed-Integer Programming Models Using Variable Redefinition," Operations Research, INFORMS, vol. 35(6), pages 820-831, December.
    8. P. C. Gilmore & R. E. Gomory, 1963. "A Linear Programming Approach to the Cutting Stock Problem---Part II," Operations Research, INFORMS, vol. 11(6), pages 863-888, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    2. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    3. Syam Menon & Rakesh Gupta, 2008. "Optimal Broadcast Scheduling in Packet Radio Networks via Branch and Price," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 391-399, August.
    4. Peeters, Marc & Degraeve, Zeger, 2006. "Branch-and-price algorithms for the dual bin packing and maximum cardinality bin packing problem," European Journal of Operational Research, Elsevier, vol. 170(2), pages 416-439, April.
    5. Ali Amiri, 2022. "The application grouping problem in Software-as-a-Service (SaaS) networks," Information Technology and Management, Springer, vol. 23(2), pages 125-137, June.
    6. Jans, Raf, 2010. "Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 204(2), pages 251-254, July.
    7. Daniel Villeneuve & Jacques Desrosiers & Marco Lübbecke & François Soumis, 2005. "On Compact Formulations for Integer Programs Solved by Column Generation," Annals of Operations Research, Springer, vol. 139(1), pages 375-388, October.
    8. Zeger Degraeve & Marc Peeters, 2003. "Optimal Integer Solutions to Industrial Cutting-Stock Problems: Part 2, Benchmark Results," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 58-81, February.
    9. Osman Ou{g}uz, 2002. "Generalized Column Generation for Linear Programming," Management Science, INFORMS, vol. 48(3), pages 444-452, March.
    10. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    11. Marc Peeters & Zeger Degraeve, 2004. "The Co-Printing Problem: A Packing Problem with a Color Constraint," Operations Research, INFORMS, vol. 52(4), pages 623-638, August.
    12. Timo Gschwind & Stefan Irnich, 2014. "Dual Inequalities for Stabilized Column Generation Revisited," Working Papers 1407, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 23 Jul 2014.
    13. Leão, Aline A.S. & Santos, Maristela O. & Hoto, Robinson & Arenales, Marcos N., 2011. "The constrained compartmentalized knapsack problem: mathematical models and solution methods," European Journal of Operational Research, Elsevier, vol. 212(3), pages 455-463, August.
    14. Zhu, Wenbin & Huang, Weili & Lim, Andrew, 2012. "A prototype column generation strategy for the multiple container loading problem," European Journal of Operational Research, Elsevier, vol. 223(1), pages 27-39.
    15. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    16. Desaulniers, G. & Desrosiers, J. & Dumas, Y. & Marc, S. & Rioux, B. & Solomon, M. M. & Soumis, F., 1997. "Crew pairing at Air France," European Journal of Operational Research, Elsevier, vol. 97(2), pages 245-259, March.
    17. Degraeve, Z. & Jans, R.F., 2003. "A New Dantzig-Wolfe Reformulation And Branch-And-Price Algorithm For The Capacitated Lot Sizing Problem With Set Up Times," ERIM Report Series Research in Management ERS-2003-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. Valerio de Carvalho, J. M., 2002. "LP models for bin packing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 141(2), pages 253-273, September.
    19. Thomas L. Magnanti, 2021. "Optimization: From Its Inception," Management Science, INFORMS, vol. 67(9), pages 5349-5363, September.
    20. Syam Menon & Linus Schrage, 2002. "Order Allocation for Stock Cutting in the Paper Industry," Operations Research, INFORMS, vol. 50(2), pages 324-332, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:48:y:2000:i:1:p:111-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.