IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v34y2000i2p133-149.html
   My bibliography  Save this article

A Benders Decomposition Approach for the Locomotive and Car Assignment Problem

Author

Listed:
  • Jean-François Cordeau

    (GERAD and École des Hautes Études Commerciales, 3000 chemin de la Côte-Sainte-Catherine, Montréal H3T 2A7, Canada)

  • François Soumis

    (GERAD and École Polytechnique de Montréal, C.P. 6079, Succ. Centre-Ville, Montréal H3C 3A7, Canada)

  • Jacques Desrosiers

    (GERAD and École des Hautes Études Commerciales, 3000 chemin de la Côte-Sainte-Catherine, Montréal H3T 2A7, Canada)

Abstract

One of the many problems faced by rail transportation companies is to optimize the utilization of the available stock of locomotives and cars. In this paper, we describe a decomposition method for the simultaneous assignment of locomotives and cars in the context of passenger transportation. Given a list of train legs and a fleet composed of several types of equipment, the problem is to determine a set of minimum cost equipment cycles such that every leg is covered using appropriate equipment. Linking constraints, which appear when both locomotives and cars are treated simultaneously, lead to a large integer programming formulation. We propose an exact algorithm, based on the Benders decomposition approach, that exploits the separability of the problem. Computational experiments carried on a number of real-life instances indicate that the method finds optimal solutions within short computing times. It also outperforms other approaches based on Lagrangian relaxation or Dantzig–Wolfe decomposition, as well as a simplex-based branch-and-bound method.

Suggested Citation

  • Jean-François Cordeau & François Soumis & Jacques Desrosiers, 2000. "A Benders Decomposition Approach for the Locomotive and Car Assignment Problem," Transportation Science, INFORMS, vol. 34(2), pages 133-149, May.
  • Handle: RePEc:inm:ortrsc:v:34:y:2000:i:2:p:133-149
    DOI: 10.1287/trsc.34.2.133.12308
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.34.2.133.12308
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.34.2.133.12308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    2. K. V. Ramani, 1981. "An Information System for Allocating Coach Stock on Indian Railways," Interfaces, INFORMS, vol. 11(3), pages 44-51, June.
    3. Jean-François Cordeau & Paolo Toth & Daniele Vigo, 1998. "A Survey of Optimization Models for Train Routing and Scheduling," Transportation Science, INFORMS, vol. 32(4), pages 380-404, November.
    4. Ziarati, Koorush & Soumis, Francois & Desrosiers, Jacques & Gelinas, Sylvie & Saintonge, Andre, 1997. "Locomotive assignment with heterogeneous consists at CN North America," European Journal of Operational Research, Elsevier, vol. 97(2), pages 281-292, March.
    5. K. V. Ramani & B. K. Mandal, 1992. "Operational Planning of Passenger Trains in Indian Railways," Interfaces, INFORMS, vol. 22(5), pages 39-51, October.
    6. Dale McDaniel & Mike Devine, 1977. "A Modified Benders' Partitioning Algorithm for Mixed Integer Programming," Management Science, INFORMS, vol. 24(3), pages 312-319, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-François Cordeau & François Soumis & Jacques Desrosiers, 2001. "Simultaneous Assignment of Locomotives and Cars to Passenger Trains," Operations Research, INFORMS, vol. 49(4), pages 531-548, August.
    2. Vaidyanathan, Balachandran & Ahuja, Ravindra K. & Liu, Jian & Shughart, Larry A., 2008. "Real-life locomotive planning: New formulations and computational results," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 147-168, February.
    3. Balachandran Vaidyanathan & Ravindra K. Ahuja & James B. Orlin, 2008. "The Locomotive Routing Problem," Transportation Science, INFORMS, vol. 42(4), pages 492-507, November.
    4. Lingaya, Norbert & Cordeau, Jean-Françcois & Desaulniers, Guy & Desrosiers, Jacques & Soumis, Françcois, 2002. "Operational car assignment at VIA Rail Canada," Transportation Research Part B: Methodological, Elsevier, vol. 36(9), pages 755-778, November.
    5. Prashant Premkumar & P. N. Ram Kumar, 2019. "Literature Review of Locomotive Assignment Problem from Service Operations Perspective: The Case of Indian Railways," IIM Kozhikode Society & Management Review, , vol. 8(1), pages 74-86, January.
    6. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.
    7. Camilo Ortiz-Astorquiza & Jean-François Cordeau & Emma Frejinger, 2021. "The Locomotive Assignment Problem with Distributed Power at the Canadian National Railway Company," Transportation Science, INFORMS, vol. 55(2), pages 510-531, March.
    8. Bach, Lukas & Gendreau, Michel & Wøhlk, Sanne, 2015. "Freight railway operator timetabling and engine scheduling," European Journal of Operational Research, Elsevier, vol. 241(2), pages 309-319.
    9. Scheffler, Martin & Neufeld, Janis S. & Hölscher, Michael, 2020. "An MIP-based heuristic solution approach for the locomotive assignment problem focussing on (dis-)connecting processes," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 64-80.
    10. Belgacem Bouzaiene-Ayari & Clark Cheng & Sourav Das & Ricardo Fiorillo & Warren B. Powell, 2016. "From Single Commodity to Multiattribute Models for Locomotive Optimization: A Comparison of Optimal Integer Programming and Approximate Dynamic Programming," Transportation Science, INFORMS, vol. 50(2), pages 366-389, May.
    11. Cordeau, Jean-François & Desaulniers, Guy & Lingaya, Norbert & Soumis, François & Desrosiers, Jacques, 2001. "Simultaneous locomotive and car assignment at VIA Rail Canada," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 767-787, September.
    12. Xu, Xiaoming & Li, Chung-Lun & Xu, Zhou, 2018. "Integrated train timetabling and locomotive assignment," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 573-593.
    13. Jean-François Cordeau & Paolo Toth & Daniele Vigo, 1998. "A Survey of Optimization Models for Train Routing and Scheduling," Transportation Science, INFORMS, vol. 32(4), pages 380-404, November.
    14. Koorush Ziarati & François Soumis & Jacques Desrosiers & Marius M. Solomon, 1999. "A Branch-First, Cut-Second Approach for Locomotive Assignment," Management Science, INFORMS, vol. 45(8), pages 1156-1168, August.
    15. Ravindra K. Ahuja & Jian Liu & James B. Orlin & Dushyant Sharma & Larry A. Shughart, 2005. "Solving Real-Life Locomotive-Scheduling Problems," Transportation Science, INFORMS, vol. 39(4), pages 503-517, November.
    16. M. Jenabi & S. M. T. Fatemi Ghomi & S. A. Torabi & Moeen Sammak Jalali, 2022. "An accelerated Benders decomposition algorithm for stochastic power system expansion planning using sample average approximation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1304-1336, December.
    17. A. Ruszczynski, 1993. "Regularized Decomposition of Stochastic Programs: Algorithmic Techniques and Numerical Results," Working Papers wp93021, International Institute for Applied Systems Analysis.
    18. Ethem Çanakoğlu & İbrahim Muter & Tevfik Aytekin, 2021. "Integrating Individual and Aggregate Diversity in Top- N Recommendation," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 300-318, January.
    19. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    20. Sankaran, Jayaram K., 1995. "Column generation applied to linear programs in course registration," European Journal of Operational Research, Elsevier, vol. 87(2), pages 328-342, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:34:y:2000:i:2:p:133-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.