Ellipsoidal Methods for Adaptive Choice-Based Conjoint Analysis
Author
Abstract
Suggested Citation
DOI: 10.1287/opre.2018.1790
Download full text from publisher
References listed on IDEAS
- Yu, Jie & Goos, Peter & Vandebroek, Martina, 2011. "Individually adapted sequential Bayesian conjoint-choice designs in the presence of consumer heterogeneity," International Journal of Research in Marketing, Elsevier, vol. 28(4), pages 378-388.
- Arora, Neeraj & Huber, Joel, 2001. "Improving Parameter Estimates and Model Prediction by Aggregate Customization in Choice Experiments," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 28(2), pages 273-283, September.
- Daria Dzyabura & John R. Hauser, 2011. "Active Machine Learning for Consideration Heuristics," Marketing Science, INFORMS, vol. 30(5), pages 801-819, September.
- Greg Allenby & Jeff Brazell & John Howell & Peter Rossi, 2014. "Economic valuation of product features," Quantitative Marketing and Economics (QME), Springer, vol. 12(4), pages 421-456, December.
- Jie Yu & Peter Goos & Martina Vandebroek, 2009. "Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity," Marketing Science, INFORMS, vol. 28(1), pages 122-135, 01-02.
- Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
- Jeff Brazell & Christopher Diener & Ekaterina Karniouchina & William Moore & Válerie Séverin & Pierre-Francois Uldry, 2006. "The no-choice option and dual response choice designs," Marketing Letters, Springer, vol. 17(4), pages 255-268, December.
- Olivier Toubia & Eric Johnson & Theodoros Evgeniou & Philippe Delquié, 2013. "Dynamic Experiments for Estimating Preferences: An Adaptive Method of Eliciting Time and Risk Parameters," Management Science, INFORMS, vol. 59(3), pages 613-640, June.
- John R. Hauser & Olivier Toubia, 2005. "The Impact of Utility Balance and Endogeneity in Conjoint Analysis," Marketing Science, INFORMS, vol. 24(3), pages 498-507, August.
- Dongling Huang & Lan Luo, 2016. "Consumer Preference Elicitation of Complex Products Using Fuzzy Support Vector Machine Active Learning," Marketing Science, INFORMS, vol. 35(3), pages 445-464, May.
- Dapeng Cui & David Curry, 2005. "Prediction in Marketing Using the Support Vector Machine," Marketing Science, INFORMS, vol. 24(4), pages 595-615, January.
- Theodoros Evgeniou & Constantinos Boussios & Giorgos Zacharia, 2005. "Generalized Robust Conjoint Estimation," Marketing Science, INFORMS, vol. 24(3), pages 415-429, May.
- Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
- Louviere,Jordan J. & Hensher,David A. & Swait,Joffre D., 2000. "Stated Choice Methods," Cambridge Books, Cambridge University Press, number 9780521788304, September.
- Kessels, Roselinde & Jones, Bradley & Goos, Peter & Vandebroek, Martina, 2009. "An Efficient Algorithm for Constructing Bayesian Optimal Choice Designs," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 279-291.
- Qing Liu & Yihui (Elina) Tang, 2015. "Construction of Heterogeneous Conjoint Choice Designs: A New Approach," Marketing Science, INFORMS, vol. 34(3), pages 346-366, May.
- Theodoros Evgeniou & Massimiliano Pontil & Olivier Toubia, 2007. "A Convex Optimization Approach to Modeling Consumer Heterogeneity in Conjoint Estimation," Marketing Science, INFORMS, vol. 26(6), pages 805-818, 11-12.
- Green, Paul E & Srinivasan, V, 1978. "Conjoint Analysis in Consumer Research: Issues and Outlook," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 5(2), pages 103-123, Se.
- Miles Lubin & Iain Dunning, 2015. "Computing in Operations Research Using Julia," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 238-248, May.
- Olivier Toubia & John Hauser & Rosanna Garcia, 2007. "Probabilistic Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis: Theory and Application," Marketing Science, INFORMS, vol. 26(5), pages 596-610, 09-10.
- Crabbe, Marjolein & Akinc, Deniz & Vandebroek, Martina, 2014. "Fast algorithms to generate individualized designs for the mixed logit choice model," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 1-15.
- Dimitris Bertsimas & Allison O'Hair, 2013. "Learning Preferences Under Noise and Loss Aversion: An Optimization Approach," Operations Research, INFORMS, vol. 61(5), pages 1190-1199, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Junpei Komiyama & Shunya Noda, 2021. "Deviation-Based Learning: Training Recommender Systems Using Informed User Choice," Papers 2109.09816, arXiv.org, revised Aug 2022.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dongling Huang & Lan Luo, 2016. "Consumer Preference Elicitation of Complex Products Using Fuzzy Support Vector Machine Active Learning," Marketing Science, INFORMS, vol. 35(3), pages 445-464, May.
- Maldonado, Sebastián & Montoya, Ricardo & Weber, Richard, 2015. "Advanced conjoint analysis using feature selection via support vector machines," European Journal of Operational Research, Elsevier, vol. 241(2), pages 564-574.
- James Agarwal & Wayne DeSarbo & Naresh K. Malhotra & Vithala Rao, 2015. "An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 19-40, March.
- Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
- Frischknecht, Bart D. & Eckert, Christine & Geweke, John & Louviere, Jordan J., 2014. "A simple method for estimating preference parameters for individuals," International Journal of Research in Marketing, Elsevier, vol. 31(1), pages 35-48.
- Rossella Berni & Nedka Dechkova Nikiforova & Patrizia Pinelli, 2024. "An Optimal Design through a Compound Criterion for Integrating Extra Preference Information in a Choice Experiment: A Case Study on Moka Ground Coffee," Stats, MDPI, vol. 7(2), pages 1-16, June.
- Nedka Dechkova Nikiforova & Rossella Berni & Jesús Fernando López‐Fidalgo, 2022. "Optimal approximate choice designs for a two‐step coffee choice, taste and choice again experiment," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1895-1917, November.
- Yu, Jie & Goos, Peter & Vandebroek, Martina, 2011. "Individually adapted sequential Bayesian conjoint-choice designs in the presence of consumer heterogeneity," International Journal of Research in Marketing, Elsevier, vol. 28(4), pages 378-388.
- Gensler, Sonja & Hinz, Oliver & Skiera, Bernd & Theysohn, Sven, 2012. "Willingness-to-pay estimation with choice-based conjoint analysis: Addressing extreme response behavior with individually adapted designs," European Journal of Operational Research, Elsevier, vol. 219(2), pages 368-378.
- Julio López & Sebastián Maldonado & Ricardo Montoya, 2017. "Simultaneous preference estimation and heterogeneity control for choice-based conjoint via support vector machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1323-1334, November.
- Wang, Xin (Shane) & Ryoo, Jun Hyun (Joseph) & Bendle, Neil & Kopalle, Praveen K., 2021. "The role of machine learning analytics and metrics in retailing research," Journal of Retailing, Elsevier, vol. 97(4), pages 658-675.
- Hauser, John R., 2014. "Consideration-set heuristics," Journal of Business Research, Elsevier, vol. 67(8), pages 1688-1699.
- Theodoros Evgeniou & Massimiliano Pontil & Olivier Toubia, 2007. "A Convex Optimization Approach to Modeling Consumer Heterogeneity in Conjoint Estimation," Marketing Science, INFORMS, vol. 26(6), pages 805-818, 11-12.
- Ghaderi, Mohammad & Kadziński, Miłosz, 2021. "Incorporating uncovered structural patterns in value functions construction," Omega, Elsevier, vol. 99(C).
- Oded Netzer & Olivier Toubia & Eric Bradlow & Ely Dahan & Theodoros Evgeniou & Fred Feinberg & Eleanor Feit & Sam Hui & Joseph Johnson & John Liechty & James Orlin & Vithala Rao, 2008. "Beyond conjoint analysis: Advances in preference measurement," Marketing Letters, Springer, vol. 19(3), pages 337-354, December.
- Falke Andreas & Hruschka Harald, 2016. "A Monte Carlo Study of Design Procedures for the Semi-parametric Mixed Logit Model," Review of Marketing Science, De Gruyter, vol. 14(1), pages 21-67, June.
- Olivier Toubia & John R. Hauser, 2007. "—On Managerially Efficient Experimental Designs," Marketing Science, INFORMS, vol. 26(6), pages 851-858, 11-12.
- Crabbe, M. & Vandebroek, M., 2012. "Improving the efficiency of individualized designs for the mixed logit choice model by including covariates," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2059-2072.
- van Cranenburgh, Sander & Rose, John M. & Chorus, Caspar G., 2018. "On the robustness of efficient experimental designs towards the underlying decision rule," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 50-64.
- Vishva Danthurebandara & Jie Yu & Martina Vandebroek, 2015. "Designing choice experiments by optimizing the complexity level to individual abilities," Quantitative Marketing and Economics (QME), Springer, vol. 13(1), pages 1-26, March.
More about this item
Keywords
conjoint analysis; geometric methods; Bayesian models; mixed-integer programming;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:67:y:2019:i:2:p:315-338. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.