IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v320y2025i1p146-159.html
   My bibliography  Save this article

Robust ordinal regression for subsets comparisons with interactions

Author

Listed:
  • Gilbert, Hugo
  • Ouaguenouni, Mohamed
  • Öztürk, Meltem
  • Spanjaard, Olivier

Abstract

This paper is devoted to a robust ordinal method for learning the preferences of a decision maker between subsets. The decision model, derived from Fishburn and LaValle (1996) and whose parameters we learn, is general enough to be compatible with any strict weak order on subsets, thanks to the consideration of possible interactions between elements. Moreover, we accept not to predict some preferences if the available preference data are not compatible with a reliable prediction. A predicted preference is considered reliable if all the simplest models (Occam’s razor) explaining the preference data agree on it. Following the robust ordinal regression methodology, our predictions are based on an uncertainty set encompassing the possible values of the model parameters. We define a new ordinal dominance relation between subsets and design a procedure to determine whether this dominance relation holds. Numerical tests are provided on synthetic and real-world data to evaluate the richness and reliability of the preference predictions made.

Suggested Citation

  • Gilbert, Hugo & Ouaguenouni, Mohamed & Öztürk, Meltem & Spanjaard, Olivier, 2025. "Robust ordinal regression for subsets comparisons with interactions," European Journal of Operational Research, Elsevier, vol. 320(1), pages 146-159.
  • Handle: RePEc:eee:ejores:v:320:y:2025:i:1:p:146-159
    DOI: 10.1016/j.ejor.2024.07.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724005629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.07.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    2. Michel Grabisch & Jean-Luc Marichal & Marc Roubens, 2000. "Equivalent Representations of Set Functions," Mathematics of Operations Research, INFORMS, vol. 25(2), pages 157-178, May.
    3. Greco, Salvatore & Mousseau, Vincent & Slowinski, Roman, 2008. "Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions," European Journal of Operational Research, Elsevier, vol. 191(2), pages 416-436, December.
    4. Johnnie R. Charnetski & Richard M. Soland, 1978. "Multiple‐attribute decision making with partial information: The comparative hypervolume criterion," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 25(2), pages 279-288, June.
    5. Edwin M. Bartee, 1971. "Problem Solving with Ordinal Measurement," Management Science, INFORMS, vol. 17(10), pages 622-633, June.
    6. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for prioritizing pair-wise elicitation questions with additive multi-attribute value models," Omega, Elsevier, vol. 71(C), pages 27-45.
    7. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    8. Denis Sauré & Juan Pablo Vielma, 2019. "Ellipsoidal Methods for Adaptive Choice-Based Conjoint Analysis," Operations Research, INFORMS, vol. 67(2), pages 315-338, March.
    9. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, September.
    10. Fishburn, Peter C. & LaValle, Irving H., 1996. "Binary interactions and subset choice," European Journal of Operational Research, Elsevier, vol. 92(1), pages 182-192, July.
    11. Jacquet-Lagreze, E. & Siskos, J., 1982. "Assessing a set of additive utility functions for multicriteria decision-making, the UTA method," European Journal of Operational Research, Elsevier, vol. 10(2), pages 151-164, June.
    12. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman, 2016. "Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model," Omega, Elsevier, vol. 63(C), pages 154-169.
    13. Mousseau, Vincent & Figueira, Jose & Dias, Luis & Gomes da Silva, Carlos & Climaco, Joao, 2003. "Resolving inconsistencies among constraints on the parameters of an MCDA model," European Journal of Operational Research, Elsevier, vol. 147(1), pages 72-93, May.
    14. Risto Lahdelma & Pekka Salminen, 2001. "SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making," Operations Research, INFORMS, vol. 49(3), pages 444-454, June.
    15. Ghaderi, Mohammad & Ruiz, Francisco & Agell, Núria, 2017. "A linear programming approach for learning non-monotonic additive value functions in multiple criteria decision aiding," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1073-1084.
    16. Grabisch, Michel, 1996. "The application of fuzzy integrals in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 89(3), pages 445-456, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.
    2. Podinovski, Vladislav V., 2020. "Maximum likelihood solutions for multicriterial choice problems," European Journal of Operational Research, Elsevier, vol. 286(1), pages 299-308.
    3. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    4. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    5. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for selecting pair-wise elicitation questions in multiple criteria choice problems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 693-707.
    6. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    7. Silvia Angilella & Marta Bottero & Salvatore Corrente & Valentina Ferretti & Salvatore Greco & Isabella M. Lami, 2016. "Non Additive Robust Ordinal Regression for urban and territorial planning: an application for siting an urban waste landfill," Annals of Operations Research, Springer, vol. 245(1), pages 427-456, October.
    8. Haag, Fridolin & Lienert, Judit & Schuwirth, Nele & Reichert, Peter, 2019. "Identifying non-additive multi-attribute value functions based on uncertain indifference statements," Omega, Elsevier, vol. 85(C), pages 49-67.
    9. Guo, Mengzhuo & Liao, Xiuwu & Liu, Jiapeng & Zhang, Qingpeng, 2020. "Consumer preference analysis: A data-driven multiple criteria approach integrating online information," Omega, Elsevier, vol. 96(C).
    10. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2024. "Inducing a probability distribution in Stochastic Multicriteria Acceptability Analysis," Omega, Elsevier, vol. 123(C).
    11. Kadziński, Miłosz & Ghaderi, Mohammad & Dąbrowski, Maciej, 2020. "Contingent preference disaggregation model for multiple criteria sorting problem," European Journal of Operational Research, Elsevier, vol. 281(2), pages 369-387.
    12. Corrente, Salvatore & Greco, Salvatore & Ishizaka, Alessio, 2016. "Combining analytical hierarchy process and Choquet integral within non-additive robust ordinal regression," Omega, Elsevier, vol. 61(C), pages 2-18.
    13. Pelegrina, Guilherme Dean & Duarte, Leonardo Tomazeli & Grabisch, Michel & Romano, João Marcos Travassos, 2020. "The multilinear model in multicriteria decision making: The case of 2-additive capacities and contributions to parameter identification," European Journal of Operational Research, Elsevier, vol. 282(3), pages 945-956.
    14. Kadziński, Miłosz & Ciomek, Krzysztof, 2021. "Active learning strategies for interactive elicitation of assignment examples for threshold-based multiple criteria sorting," European Journal of Operational Research, Elsevier, vol. 293(2), pages 658-680.
    15. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2022. "Bayesian ordinal regression for multiple criteria choice and ranking," European Journal of Operational Research, Elsevier, vol. 299(2), pages 600-620.
    16. Ghaderi, Mohammad & Kadziński, Miłosz, 2021. "Incorporating uncovered structural patterns in value functions construction," Omega, Elsevier, vol. 99(C).
    17. Doumpos, Michael & Zopounidis, Constantin, 2011. "Preference disaggregation and statistical learning for multicriteria decision support: A review," European Journal of Operational Research, Elsevier, vol. 209(3), pages 203-214, March.
    18. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    19. Liu, Jiapeng & Liao, Xiuwu & Huang, Wei & Liao, Xianzhao, 2019. "Market segmentation: A multiple criteria approach combining preference analysis and segmentation decision," Omega, Elsevier, vol. 83(C), pages 1-13.
    20. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman, 2016. "Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model," Omega, Elsevier, vol. 63(C), pages 154-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:320:y:2025:i:1:p:146-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.