IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v60y2014icp1-15.html
   My bibliography  Save this article

Fast algorithms to generate individualized designs for the mixed logit choice model

Author

Listed:
  • Crabbe, Marjolein
  • Akinc, Deniz
  • Vandebroek, Martina

Abstract

The mixed logit choice model has become the common standard to analyze transport behavior. Moreover, more and more transport studies start to make use of stated preference data to obtain precise knowledge on travelers’ preferences. Accounting for the individual-specific coefficients in the mixed logit choice model, this research advocates an individualized design approach to generate these stated choice experiments. Individualized designs are sequentially generated for each person separately, using the answers from previous choice sets to select the next best set in a survey. In this way they are adapted to the specific preferences of an individual and therefore more efficient than an aggregate design. In order for individual sequential designs to be practicable, the speed of designing an additional choice set in an experiment is obviously a key issue. This paper introduces three design criteria used in optimal test design, based on Kullback–Leibler information, and compares them with the well known D-efficiency criterion to obtain individually adapted choice designs for the mixed logit choice model. Being equally efficient to D-efficiency and at the same time much faster, the Kullback–Leibler criteria are well suited for the design of individualized choice experiments.

Suggested Citation

  • Crabbe, Marjolein & Akinc, Deniz & Vandebroek, Martina, 2014. "Fast algorithms to generate individualized designs for the mixed logit choice model," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 1-15.
  • Handle: RePEc:eee:transb:v:60:y:2014:i:c:p:1-15
    DOI: 10.1016/j.trb.2013.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261513002178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2013.11.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2011. "Individually adapted sequential Bayesian conjoint-choice designs in the presence of consumer heterogeneity," International Journal of Research in Marketing, Elsevier, vol. 28(4), pages 378-388.
    2. Chun Wang & Hua-Hua Chang, 2011. "Item Selection in Multidimensional Computerized Adaptive Testing—Gaining Information from Different Angles," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 363-384, July.
    3. Hess, Stephane & Adler, Thomas & Polak, John W., 2007. "Modelling airport and airline choice behaviour with the use of stated preference survey data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(3), pages 221-233, May.
    4. Greene, William H. & Hensher, David A. & Rose, John, 2006. "Accounting for heterogeneity in the variance of unobserved effects in mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 40(1), pages 75-92, January.
    5. Jie Yu & Peter Goos & Martina Vandebroek, 2009. "Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity," Marketing Science, INFORMS, vol. 28(1), pages 122-135, 01-02.
    6. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    7. John M. Rose & Michiel C. J. Bliemer, 2008. "Constructing Efficient Stated Choice Experimental Designs," Transport Reviews, Taylor & Francis Journals, vol. 29(5), pages 587-617, October.
    8. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    9. Vishva Danthurebandara & Jie Yu & Martina Vandebroek, 2011. "Sequential choice designs to estimate the heterogeneity distribution of willingness-to-pay," Quantitative Marketing and Economics (QME), Springer, vol. 9(4), pages 429-448, December.
    10. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    11. Bhat, Chandra R., 2012. "Recent developments in discrete choice model formulation, estimation, and inference," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 273-275.
    12. Ying Cheng, 2009. "When Cognitive Diagnosis Meets Computerized Adaptive Testing: CD-CAT," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 619-632, December.
    13. Bhat, Chandra R., 1998. "Accommodating variations in responsiveness to level-of-service measures in travel mode choice modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 495-507, September.
    14. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    15. Espino, Raquel & Martín, Juan Carlos & Román, Concepción, 2008. "Analyzing the effect of preference heterogeneity on willingness to pay for improving service quality in an airline choice context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(4), pages 593-606, July.
    16. Zsolt Sándor & Michel Wedel, 2002. "Profile Construction in Experimental Choice Designs for Mixed Logit Models," Marketing Science, INFORMS, vol. 21(4), pages 455-475, February.
    17. Hess, Stephane & Hensher, David A., 2010. "Using conditioning on observed choices to retrieve individual-specific attribute processing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 781-790, July.
    18. Axhausen, Kay W. & Hess, Stephane & König, Arnd & Abay, Georg & Bates, John J. & Bierlaire, Michel, 2008. "Income and distance elasticities of values of travel time savings: New Swiss results," Transport Policy, Elsevier, vol. 15(3), pages 173-185, May.
    19. A. Jourdan & J. Franco, 2010. "Optimal Latin hypercube designs for the Kullback–Leibler criterion," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(4), pages 341-351, December.
    20. Ben-Akiva, M. & Bolduc, D. & Bradley, M., 1993. "Estimation of Travel Choice Models with Randomly Distributed Values of Time," Papers 9303, Laval - Recherche en Energie.
    21. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2010. "Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1268-1289, December.
    22. Hess, Stephane & Train, Kenneth E., 2011. "Recovery of inter- and intra-personal heterogeneity using mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 973-990, August.
    23. Hess, Stephane & Bierlaire, Michel & Polak, John W., 2005. "Estimation of value of travel-time savings using mixed logit models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 221-236.
    24. Peter J. Lenk & Wayne S. DeSarbo & Paul E. Green & Martin R. Young, 1996. "Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs," Marketing Science, INFORMS, vol. 15(2), pages 173-191.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel P'erez-Troncoso, 2020. "A step-by-step guide to design, implement, and analyze a discrete choice experiment," Papers 2009.11235, arXiv.org.
    2. Denis Sauré & Juan Pablo Vielma, 2019. "Ellipsoidal Methods for Adaptive Choice-Based Conjoint Analysis," Operations Research, INFORMS, vol. 67(2), pages 315-338, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crabbe, M. & Vandebroek, M., 2012. "Improving the efficiency of individualized designs for the mixed logit choice model by including covariates," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2059-2072.
    2. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2011. "Individually adapted sequential Bayesian conjoint-choice designs in the presence of consumer heterogeneity," International Journal of Research in Marketing, Elsevier, vol. 28(4), pages 378-388.
    3. Palhazi Cuervo, Daniel & Kessels, Roselinde & Goos, Peter & Sörensen, Kenneth, 2016. "An integrated algorithm for the optimal design of stated choice experiments with partial profiles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 648-669.
    4. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    5. Abildtrup, Jens & Garcia, Serge & Olsen, Søren Bøye & Stenger, Anne, 2013. "Spatial preference heterogeneity in forest recreation," Ecological Economics, Elsevier, vol. 92(C), pages 67-77.
    6. Joan L. Walker & Moshe Ben-Akiva, 2011. "Advances in Discrete Choice: Mixture Models," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 8, Edward Elgar Publishing.
    7. Poudel, Niranjan & Singleton, Patrick A., 2024. "Willingness to pay for changes in travel time and work time: A stated choice experiment of US commuters," Research in Transportation Economics, Elsevier, vol. 103(C).
    8. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    9. Campbell, Danny, 2007. "Combining mixed logit models and random effects models to identify the determinants of willingness to pay for rural landscape improvements," 81st Annual Conference, April 2-4, 2007, Reading University, UK 7975, Agricultural Economics Society.
    10. Rossella Berni & Nedka Dechkova Nikiforova & Patrizia Pinelli, 2024. "An Optimal Design through a Compound Criterion for Integrating Extra Preference Information in a Choice Experiment: A Case Study on Moka Ground Coffee," Stats, MDPI, vol. 7(2), pages 1-16, June.
    11. Nedka Dechkova Nikiforova & Rossella Berni & Jesús Fernando López‐Fidalgo, 2022. "Optimal approximate choice designs for a two‐step coffee choice, taste and choice again experiment," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1895-1917, November.
    12. Jan-Erik Swärdh & Staffan Algers, 2016. "Willingness to accept commuting time within the household: stated preference evidence," Transportation, Springer, vol. 43(2), pages 219-241, March.
    13. KESSELS, Roselinde & BRADLEY, Jones & GOOS, Peter, 2012. "A comparison of partial profile designs for discrete choice experiments with an application in software development," Working Papers 2012004, University of Antwerp, Faculty of Business and Economics.
    14. van Cranenburgh, Sander & Rose, John M. & Chorus, Caspar G., 2018. "On the robustness of efficient experimental designs towards the underlying decision rule," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 50-64.
    15. Hess, Stephane & Rose, John M., 2009. "Allowing for intra-respondent variations in coefficients estimated on repeated choice data," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 708-719, July.
    16. Aiste Ruseckaite & Peter Goos & Dennis Fok, 2017. "Bayesian D-optimal choice designs for mixtures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 363-386, February.
    17. Merkert, Rico & Beck, Matthew, 2017. "Value of travel time savings and willingness to pay for regional aviation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 29-42.
    18. Bliemer, Michiel C.J. & Rose, John M., 2011. "Experimental design influences on stated choice outputs: An empirical study in air travel choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 63-79, January.
    19. Basu, Debasis & Hunt, John Douglas, 2012. "Valuing of attributes influencing the attractiveness of suburban train service in Mumbai city: A stated preference approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(9), pages 1465-1476.
    20. Deka, Devajyoti & Carnegie, Jon, 2021. "Predicting transit mode choice of New Jersey workers commuting to New York City from a stated preference survey," Journal of Transport Geography, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:60:y:2014:i:c:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.