IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v26y2007i6p851-858.html
   My bibliography  Save this article

—On Managerially Efficient Experimental Designs

Author

Listed:
  • Olivier Toubia

    (Columbia Business School, Columbia University, 522 Uris Hall, 3022 Broadway, New York, New York 10027)

  • John R. Hauser

    (Sloan School of Management, Massachusetts Institute of Technology, E40-179, 1 Amherst Street, Cambridge, Massachusetts 02142)

Abstract

In most marketing experiments, managerial decisions are not based directly on the estimates of the parameters but rather on functions of these estimates. For example, many managerial decisions are driven by whether or not a feature is valued more than the price the consumer will be asked to pay. In other cases, some managerial decisions are weighed more heavily than others. The standard measures used to evaluate experimental designs (e.g., -efficiency or -efficiency) do not accommodate these phenomena. We propose alternative “managerial efficiency” criteria (-errors) that are relatively easy to implement. We explore their properties, suggest practical algorithms to decrease errors, and provide illustrative examples. Realistic examples suggest improvements of as much as 30% in managerial efficiency. We close by considering approximations for nonlinear criteria and extensions to choice-based experiments.

Suggested Citation

  • Olivier Toubia & John R. Hauser, 2007. "—On Managerially Efficient Experimental Designs," Marketing Science, INFORMS, vol. 26(6), pages 851-858, 11-12.
  • Handle: RePEc:inm:ormksc:v:26:y:2007:i:6:p:851-858
    DOI: 10.1287/mksc.1060.0244
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1060.0244
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.1060.0244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John R. Hauser & Olivier Toubia, 2005. "The Impact of Utility Balance and Endogeneity in Conjoint Analysis," Marketing Science, INFORMS, vol. 24(3), pages 498-507, August.
    2. Olivier Toubia & Duncan I. Simester & John R. Hauser & Ely Dahan, 2003. "Fast Polyhedral Adaptive Conjoint Estimation," Marketing Science, INFORMS, vol. 22(3), pages 273-303.
    3. Hauser, John R & Urban, Glen L, 1986. "The Value Priority Hypotheses for Consumer Budget Plans," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 12(4), pages 446-462, March.
    4. Dapeng Cui & David Curry, 2005. "Prediction in Marketing Using the Support Vector Machine," Marketing Science, INFORMS, vol. 24(4), pages 595-615, January.
    5. John C. Liechty & Duncan K. H. Fong & Wayne S. DeSarbo, 2005. "Dynamic Models Incorporating Individual Heterogeneity: Utility Evolution in Conjoint Analysis," Marketing Science, INFORMS, vol. 24(2), pages 285-293, November.
    6. Arora, Neeraj & Huber, Joel, 2001. "Improving Parameter Estimates and Model Prediction by Aggregate Customization in Choice Experiments," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 28(2), pages 273-283, September.
    7. Theodoros Evgeniou & Constantinos Boussios & Giorgos Zacharia, 2005. "Generalized Robust Conjoint Estimation," Marketing Science, INFORMS, vol. 24(3), pages 415-429, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gensler, Sonja & Hinz, Oliver & Skiera, Bernd & Theysohn, Sven, 2012. "Willingness-to-pay estimation with choice-based conjoint analysis: Addressing extreme response behavior with individually adapted designs," European Journal of Operational Research, Elsevier, vol. 219(2), pages 368-378.
    2. Daria Dzyabura & John R. Hauser, 2011. "Active Machine Learning for Consideration Heuristics," Marketing Science, INFORMS, vol. 30(5), pages 801-819, September.
    3. Oded Netzer & Olivier Toubia & Eric Bradlow & Ely Dahan & Theodoros Evgeniou & Fred Feinberg & Eleanor Feit & Sam Hui & Joseph Johnson & John Liechty & James Orlin & Vithala Rao, 2008. "Beyond conjoint analysis: Advances in preference measurement," Marketing Letters, Springer, vol. 19(3), pages 337-354, December.
    4. Riccardo Scarpa & John M. Rose, 2008. "Design efficiency for non-market valuation with choice modelling: how to measure it, what to report and why ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(3), pages 253-282, September.
    5. James Agarwal & Wayne DeSarbo & Naresh K. Malhotra & Vithala Rao, 2015. "An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 19-40, March.
    6. Rossella Berni & Nedka Dechkova Nikiforova & Patrizia Pinelli, 2024. "An Optimal Design through a Compound Criterion for Integrating Extra Preference Information in a Choice Experiment: A Case Study on Moka Ground Coffee," Stats, MDPI, vol. 7(2), pages 1-16, June.
    7. Qing Liu & Neeraj Arora, 2011. "Efficient Choice Designs for a Consider-Then-Choose Model," Marketing Science, INFORMS, vol. 30(2), pages 321-338, 03-04.
    8. Dominique Olié Lauga & Elie Ofek, 2009. "Market Research and Innovation Strategy in a Duopoly," Marketing Science, INFORMS, vol. 28(2), pages 373-396, 03-04.
    9. Qing Liu & Yihui (Elina) Tang, 2015. "Construction of Heterogeneous Conjoint Choice Designs: A New Approach," Marketing Science, INFORMS, vol. 34(3), pages 346-366, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theodoros Evgeniou & Massimiliano Pontil & Olivier Toubia, 2007. "A Convex Optimization Approach to Modeling Consumer Heterogeneity in Conjoint Estimation," Marketing Science, INFORMS, vol. 26(6), pages 805-818, 11-12.
    2. Olivier Toubia & John Hauser & Rosanna Garcia, 2007. "Probabilistic Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis: Theory and Application," Marketing Science, INFORMS, vol. 26(5), pages 596-610, 09-10.
    3. Dongling Huang & Lan Luo, 2016. "Consumer Preference Elicitation of Complex Products Using Fuzzy Support Vector Machine Active Learning," Marketing Science, INFORMS, vol. 35(3), pages 445-464, May.
    4. Michael Yee & Ely Dahan & John R. Hauser & James Orlin, 2007. "Greedoid-Based Noncompensatory Inference," Marketing Science, INFORMS, vol. 26(4), pages 532-549, 07-08.
    5. Denis Sauré & Juan Pablo Vielma, 2019. "Ellipsoidal Methods for Adaptive Choice-Based Conjoint Analysis," Operations Research, INFORMS, vol. 67(2), pages 315-338, March.
    6. Rajeev Kohli & Kamel Jedidi, 2007. "Representation and Inference of Lexicographic Preference Models and Their Variants," Marketing Science, INFORMS, vol. 26(3), pages 380-399, 05-06.
    7. James Agarwal & Wayne DeSarbo & Naresh K. Malhotra & Vithala Rao, 2015. "An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 19-40, March.
    8. Eggers, Felix & Sattler, Henrik, 2009. "Hybrid individualized two-level choice-based conjoint (HIT-CBC): A new method for measuring preference structures with many attribute levels," International Journal of Research in Marketing, Elsevier, vol. 26(2), pages 108-118.
    9. Theodoros Evgeniou & Constantinos Boussios & Giorgos Zacharia, 2005. "Generalized Robust Conjoint Estimation," Marketing Science, INFORMS, vol. 24(3), pages 415-429, May.
    10. Maldonado, Sebastián & Montoya, Ricardo & Weber, Richard, 2015. "Advanced conjoint analysis using feature selection via support vector machines," European Journal of Operational Research, Elsevier, vol. 241(2), pages 564-574.
    11. Yupeng Chen & Raghuram Iyengar & Garud Iyengar, 2017. "Modeling Multimodal Continuous Heterogeneity in Conjoint Analysis—A Sparse Learning Approach," Marketing Science, INFORMS, vol. 36(1), pages 140-156, January.
    12. Julio López & Sebastián Maldonado & Ricardo Montoya, 2017. "Simultaneous preference estimation and heterogeneity control for choice-based conjoint via support vector machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1323-1334, November.
    13. Lan Luo & P. K. Kannan & Brian T. Ratchford, 2007. "New Product Development Under Channel Acceptance," Marketing Science, INFORMS, vol. 26(2), pages 149-163, 03-04.
    14. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
    15. Oded Netzer & Olivier Toubia & Eric Bradlow & Ely Dahan & Theodoros Evgeniou & Fred Feinberg & Eleanor Feit & Sam Hui & Joseph Johnson & John Liechty & James Orlin & Vithala Rao, 2008. "Beyond conjoint analysis: Advances in preference measurement," Marketing Letters, Springer, vol. 19(3), pages 337-354, December.
    16. Steven M. Shugan, 2006. "Editorial: Who Is Afraid to Give Freedom of Speech to Marketing Folks?," Marketing Science, INFORMS, vol. 25(5), pages 403-410, September.
    17. Díaz, Verónica & Montoya, Ricardo & Maldonado, Sebastián, 2023. "Preference estimation under bounded rationality: Identification of attribute non-attendance in stated-choice data using a support vector machines approach," European Journal of Operational Research, Elsevier, vol. 304(2), pages 797-812.
    18. Halme, Merja & Kallio, Markku, 2011. "Estimation methods for choice-based conjoint analysis of consumer preferences," European Journal of Operational Research, Elsevier, vol. 214(1), pages 160-167, October.
    19. Olivier Toubia & Laurent Florès, 2007. "Adaptive Idea Screening Using Consumers," Marketing Science, INFORMS, vol. 26(3), pages 342-360, 05-06.
    20. Srinivasan, V. Seenu & Netzer, Oded, 2007. "Adaptive Self-Explication of Multi-attribute Preferences," Research Papers 1979, Stanford University, Graduate School of Business.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:26:y:2007:i:6:p:851-858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.