IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v65y2017i2p446-468.html
   My bibliography  Save this article

The Impact of Linear Optimization on Promotion Planning

Author

Listed:
  • Maxime C. Cohen

    (Stern School of Business, New York University, New York, New York 10012)

  • Ngai-Hang Zachary Leung

    (College of Business, City University of Hong Kong, Kowloon, Hong Kong)

  • Kiran Panchamgam

    (Oracle Retail Global Business Unit (RGBU), Burlington, Massachusetts 01803)

  • Georgia Perakis

    (Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Anthony Smith

    (Oracle RGBU, Burlington, Massachusetts 01803)

Abstract

Sales promotions are important in the fast-moving consumer goods (FMCG) industry due to the significant spending on promotions and the fact that a large proportion of FMCG products are sold on promotion. This paper considers the problem of planning sales promotions for an FMCG product in a grocery retail setting. The category manager has to solve the promotion optimization problem (POP) for each product, i.e., how to select a posted price for each period in a finite horizon so as to maximize the retailer’s profit. Through our collaboration with Oracle Retail, we developed an optimization formulation for the POP that can be used by category managers in a grocery environment. Our formulation incorporates business rules that are relevant, in practice. We propose general classes of demand functions (including multiplicative and additive), which incorporate the post-promotion dip effect, and can be estimated from sales data. In general, the POP formulation has a nonlinear objective and is NP-hard. We then propose a linear integer programming (IP) approximation of the POP. We show that the IP has an integral feasible region, and hence can be solved efficiently as a linear program (LP). We develop performance guarantees for the profit of the LP solution relative to the optimal profit. Using sales data from a grocery retailer, we first show that our demand models can be estimated with high accuracy, and then demonstrate that using the LP promotion schedule could potentially increase the profit by 3%, with a potential profit increase of 5% if some business constraints were to be relaxed.

Suggested Citation

  • Maxime C. Cohen & Ngai-Hang Zachary Leung & Kiran Panchamgam & Georgia Perakis & Anthony Smith, 2017. "The Impact of Linear Optimization on Promotion Planning," Operations Research, INFORMS, vol. 65(2), pages 446-468, April.
  • Handle: RePEc:inm:oropre:v:65:y:2017:i:2:p:446-468
    DOI: 10.1287/opre.2016.1573
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2016.1573
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2016.1573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. João L. Assunção & Robert J. Meyer, 1993. "The Rational Effect of Price Promotions on Sales and Consumption," Management Science, INFORMS, vol. 39(5), pages 517-535, May.
    2. Dimitris Bertsimas & Romy Shioda, 2009. "Algorithm for cardinality-constrained quadratic optimization," Computational Optimization and Applications, Springer, vol. 43(1), pages 1-22, May.
    3. Villas-Boas, J Miguel, 1995. "Models of Competitive Price Promotions: Some Empirical Evidence from the Coffee and Saltine Crackers Markets," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 4(1), pages 85-107, Spring.
    4. Xuanming Su, 2010. "Intertemporal Pricing and Consumer Stockpiling," Operations Research, INFORMS, vol. 58(4-part-2), pages 1133-1147, August.
    5. Lee G. Cooper & Penny Baron & Wayne Levy & Michael Swisher & Paris Gogos, 1999. "PromoCast™: A New Forecasting Method for Promotion Planning," Marketing Science, INFORMS, vol. 18(3), pages 301-316.
    6. Wen Zhao & Yu-Sheng Zheng, 2000. "Optimal Dynamic Pricing for Perishable Assets with Nonhomogeneous Demand," Management Science, INFORMS, vol. 46(3), pages 375-388, March.
    7. Ioana Popescu & Yaozhong Wu, 2007. "Dynamic Pricing Strategies with Reference Effects," Operations Research, INFORMS, vol. 55(3), pages 413-429, June.
    8. Hyun-soo Ahn & Mehmet Gümüş & Philip Kaminsky, 2007. "Pricing and Manufacturing Decisions When Demand Is a Function of Prices in Multiple Periods," Operations Research, INFORMS, vol. 55(6), pages 1039-1057, December.
    9. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Felipe Caro & Jérémie Gallien, 2012. "Clearance Pricing Optimization for a Fast-Fashion Retailer," Operations Research, INFORMS, vol. 60(6), pages 1404-1422, December.
    11. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Foekens, Eijte W. & S.H. Leeflang, Peter & Wittink, Dick R., 1998. "Varying parameter models to accommodate dynamic promotion effects," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 249-268, November.
    13. van Donselaar, K. & van Woensel, T. & Broekmeulen, R. & Fransoo, J., 2006. "Inventory control of perishables in supermarkets," International Journal of Production Economics, Elsevier, vol. 104(2), pages 462-472, December.
    14. Yale T. Herer & Michal Tzur, 2001. "The dynamic transshipment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(5), pages 386-408, August.
    15. Gadi Fibich & Arieh Gavious & Oded Lowengart, 2003. "Explicit Solutions of Optimization Models and Differential Games with Nonsmooth (Asymmetric) Reference-Price Effects," Operations Research, INFORMS, vol. 51(5), pages 721-734, October.
    16. Shivaram Subramanian & Hanif Sherali, 2010. "A fractional programming approach for retail category price optimization," Journal of Global Optimization, Springer, vol. 48(2), pages 263-277, October.
    17. Praveen K. Kopalle & Ambar G. Rao & João L. Assunção, 1996. "Asymmetric Reference Price Effects and Dynamic Pricing Policies," Marketing Science, INFORMS, vol. 15(1), pages 60-85.
    18. repec:bla:jemstr:v:4:y:1995:i:1:p:85-107:a is not listed on IDEAS
    19. Gérard P. Cachon & Martin A. Lariviere, 2005. "Supply Chain Coordination with Revenue-Sharing Contracts: Strengths and Limitations," Management Science, INFORMS, vol. 51(1), pages 30-44, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manqi (Maggie) Li & Yan Huang & Amitabh Sinha, 2020. "Data-Driven Promotion Planning for Paid Mobile Applications," Information Systems Research, INFORMS, vol. 31(3), pages 1007-1029, September.
    2. So Yeon Chun & Miguel A. Lejeune, 2020. "Risk-Based Loan Pricing: Portfolio Optimization Approach with Marginal Risk Contribution," Management Science, INFORMS, vol. 66(8), pages 3735-3753, August.
    3. Naragain Phumchusri & Thiti Chewcharat & Supawish Kanokpongsakorn, 2024. "Price promotion optimization model for multiperiod planning: a case study of beauty category products sold in a convenience store chain," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(2), pages 164-178, April.
    4. Bharadwaj Kadiyala & Özalp Özer & A. Serdar Şimşek, 2021. "Data‐Driven Approaches to Targeting Promotion E‐mails: The Case of Delayed Incentives," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 766-782, March.
    5. Marshall Fisher & Santiago Gallino & Jun Li, 2018. "Competition-Based Dynamic Pricing in Online Retailing: A Methodology Validated with Field Experiments," Management Science, INFORMS, vol. 64(6), pages 2496-2514, June.
    6. Yonatan Gur & Gregory Macnamara & Ilan Morgenstern & Daniela Saban, 2019. "Information Disclosure and Promotion Policy Design for Platforms," Papers 1911.09256, arXiv.org, revised Dec 2022.
    7. Namin, Aidin & Dehdashti, Yashar, 2019. "A “hidden†side of consumer grocery shopping choice," Journal of Retailing and Consumer Services, Elsevier, vol. 48(C), pages 16-27.
    8. Bigdellou, Saeide & Aslani, Shirin & Modarres, Mohammad, 2022. "Optimal promotion planning for a product launch in the presence of word-of-mouth," Journal of Retailing and Consumer Services, Elsevier, vol. 64(C).
    9. Dennis J. Zhang & Hengchen Dai & Lingxiu Dong & Fangfang Qi & Nannan Zhang & Xiaofei Liu & Zhongyi Liu & Jiang Yang, 2020. "The Long-term and Spillover Effects of Price Promotions on Retailing Platforms: Evidence from a Large Randomized Experiment on Alibaba," Management Science, INFORMS, vol. 66(6), pages 2589-2609, June.
    10. Keun Hee Lee & Mali Abdollahian & Sergei Schreider & Sona Taheri, 2023. "Supply Chain Demand Forecasting and Price Optimisation Models with Substitution Effect," Mathematics, MDPI, vol. 11(11), pages 1-28, May.
    11. Maxime C. Cohen & Swati Gupta & Jeremy J. Kalas & Georgia Perakis, 2020. "An Efficient Algorithm for Dynamic Pricing Using a Graphical Representation," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2326-2349, October.
    12. Wolters, Jannik & Huchzermeier, Arnd, 2021. "Joint In-Season and Out-of-Season Promotion Demand Forecasting in a Retail Environment," Journal of Retailing, Elsevier, vol. 97(4), pages 726-745.
    13. Zhe (James) Zhang & Shivendu Shivendu & Peng Wang, 2021. "Is Investment in Data Analytics Always Profitable? The Case of Third‐Party‐Online‐Promotion Marketplace," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2321-2337, July.
    14. Gur, Yonatan & Macnamara, Gregory & Saban, Daniela, 2020. "On the Disclosure of Promotion Value in Platforms with Learning Sellers," Research Papers 3865, Stanford University, Graduate School of Business.
    15. Karen Donohue & Özalp Özer, 2020. "Behavioral Operations: Past, Present, and Future," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 191-202, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maxime C. Cohen & Swati Gupta & Jeremy J. Kalas & Georgia Perakis, 2020. "An Efficient Algorithm for Dynamic Pricing Using a Graphical Representation," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2326-2349, October.
    2. Zhenyu Hu & Xin Chen & Peng Hu, 2016. "Technical Note—Dynamic Pricing with Gain-Seeking Reference Price Effects," Operations Research, INFORMS, vol. 64(1), pages 150-157, February.
    3. Xin Chen & Peng Hu & Zhenyu Hu, 2017. "Efficient Algorithms for the Dynamic Pricing Problem with Reference Price Effect," Management Science, INFORMS, vol. 63(12), pages 4389-4406, December.
    4. Hongjun Peng & Tao Pang & Fuliang Cao & Juan Zhao, 2018. "A Mutual Subsidy Mechanism for a Seasonal Product Supply Chain Channel Under Double Price Regulation," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(06), pages 1-26, December.
    5. Grigoriev, A. & Hiller, B. & Marban, S. & Vredeveld, T. & van der Zwaan, G.R.J., 2010. "Dynamic pricing problems with elastic demand," Research Memorandum 053, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    6. Necati Tereyağoğlu & Peter S. Fader & Senthil Veeraraghavan, 2018. "Multiattribute Loss Aversion and Reference Dependence: Evidence from the Performing Arts Industry," Management Science, INFORMS, vol. 64(1), pages 421-436, January.
    7. Sibdari, Soheil & Pyke, David F., 2010. "A competitive dynamic pricing model when demand is interdependent over time," European Journal of Operational Research, Elsevier, vol. 207(1), pages 330-338, November.
    8. Shengqi Ye & Goker Aydin & Shanshan Hu, 2015. "Sponsored Search Marketing: Dynamic Pricing and Advertising for an Online Retailer," Management Science, INFORMS, vol. 61(6), pages 1255-1274, June.
    9. Régis Chenavaz, 2017. "Dynamic quality policies with reference quality effects," Applied Economics, Taylor & Francis Journals, vol. 49(32), pages 3156-3162, July.
    10. Anton, Ramona & Chenavaz, Régis Y. & Paraschiv, Corina, 2023. "Dynamic pricing, reference price, and price-quality relationship," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    11. Zhang, Juan & Gou, Qinglong & Liang, Liang & Huang, Zhimin, 2013. "Supply chain coordination through cooperative advertising with reference price effect," Omega, Elsevier, vol. 41(2), pages 345-353.
    12. Aperjis, C & Bosch-Rosa, C & Friedman, D & Huberman, BA, 2014. "Boiling the frog optimally: An experiment on survivor curve shapes and internet revenue," Santa Cruz Department of Economics, Working Paper Series qt7d79g6w8, Department of Economics, UC Santa Cruz.
    13. Malekian, Yaser & Rasti-Barzoki, Morteza, 2019. "A game theoretic approach to coordinate price promotion and advertising policies with reference price effects in a two-echelon supply chain," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 114-128.
    14. Georgia Perakis & Melvyn Sim & Qinshen Tang & Peng Xiong, 2023. "Robust Pricing and Production with Information Partitioning and Adaptation," Management Science, INFORMS, vol. 69(3), pages 1398-1419, March.
    15. Martín-Herrán, Guiomar & Taboubi, Sihem, 2015. "Price coordination in distribution channels: A dynamic perspective," European Journal of Operational Research, Elsevier, vol. 240(2), pages 401-414.
    16. Colombo, Luca & Labrecciosa, Paola, 2021. "Dynamic oligopoly pricing with reference-price effects," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1006-1016.
    17. Wang, Xiaojun & Li, Dong, 2012. "A dynamic product quality evaluation based pricing model for perishable food supply chains," Omega, Elsevier, vol. 40(6), pages 906-917.
    18. Reiner, Gerald & Fichtinger, Johannes, 2009. "Demand forecasting for supply processes in consideration of pricing and market information," International Journal of Production Economics, Elsevier, vol. 118(1), pages 55-62, March.
    19. Ma, Peng & Gong, Yeming & Mirchandani, Prakash, 2020. "Trade-in for remanufactured products: Pricing with double reference effects," International Journal of Production Economics, Elsevier, vol. 230(C).
    20. Liang, Xiaoying & Ma, Lijun & Xie, Lei & Yan, Houmin, 2014. "The informational aspect of the group-buying mechanism," European Journal of Operational Research, Elsevier, vol. 234(1), pages 331-340.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:65:y:2017:i:2:p:446-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.