IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i17p5127-5141.html
   My bibliography  Save this article

Dynamic supply chain decisions based on networked sensor data: an application in the chilled food retail chain

Author

Listed:
  • Dong Li
  • Xiaojun Wang

Abstract

With large volume of product flows and complex supply chain processes, more data than ever before is being generated and collected in supply chains through various tracking and sensory technologies. The purpose of this study is to show a potential scenario of using a prototype tracking tool that facilitate the utilisation of sensor data, which is often unstructured and enormous in nature, to support supply chain decisions. The research investigates the potential benefits of the chilled food chain management innovation through sensor data driven pricing decisions. Data generated and recorded through the sensor network are used to predict the remaining shelf-life of perishable foods. Numerical analysis is conducted to examine the benefit of proposed approach under various operational situations and product features. The research findings demonstrate a way of modelling pricing and potential of performance improvement in chilled food chains to provide a vision of smooth transfer and implementation of the sensor data driven supply chain management. The research finding would encourage firms in the food industry to explore innovation opportunities from big data and develop proper data driven strategies to improve their competitiveness.

Suggested Citation

  • Dong Li & Xiaojun Wang, 2017. "Dynamic supply chain decisions based on networked sensor data: an application in the chilled food retail chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5127-5141, September.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:17:p:5127-5141
    DOI: 10.1080/00207543.2015.1047976
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1047976
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1047976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chatwin, Richard E., 2000. "Optimal dynamic pricing of perishable products with stochastic demand and a finite set of prices," European Journal of Operational Research, Elsevier, vol. 125(1), pages 149-174, August.
    2. Wen Zhao & Yu-Sheng Zheng, 2000. "Optimal Dynamic Pricing for Perishable Assets with Nonhomogeneous Demand," Management Science, INFORMS, vol. 46(3), pages 375-388, March.
    3. Wedad Elmaghraby & P{i}nar Keskinocak, 2003. "Dynamic Pricing in the Presence of Inventory Considerations: Research Overview, Current Practices, and Future Directions," Management Science, INFORMS, vol. 49(10), pages 1287-1309, October.
    4. Wang, Xiaojun & Li, Dong, 2012. "A dynamic product quality evaluation based pricing model for perishable food supply chains," Omega, Elsevier, vol. 40(6), pages 906-917.
    5. Herbon, Avi & Levner, Eugene & Cheng, T.C.E., 2014. "Perishable inventory management with dynamic pricing using time–temperature indicators linked to automatic detecting devices," International Journal of Production Economics, Elsevier, vol. 147(PC), pages 605-613.
    6. Abad, P. L. & Aggarwal, Vijay, 2005. "Incorporating transport cost in the lot size and pricing decisions with downward sloping demand," International Journal of Production Economics, Elsevier, vol. 95(3), pages 297-305, March.
    7. Rong, Aiying & Akkerman, Renzo & Grunow, Martin, 2011. "An optimization approach for managing fresh food quality throughout the supply chain," International Journal of Production Economics, Elsevier, vol. 131(1), pages 421-429, May.
    8. van Donselaar, K. & van Woensel, T. & Broekmeulen, R. & Fransoo, J., 2006. "Inventory control of perishables in supermarkets," International Journal of Production Economics, Elsevier, vol. 104(2), pages 462-472, December.
    9. Fujiwara, Okitsugu & Perera, U. L. J. S. R., 1993. "EOQ models for continuously deteriorating products using linear and exponential penalty costs," European Journal of Operational Research, Elsevier, vol. 70(1), pages 104-114, October.
    10. Praveen K. Kopalle & Ambar G. Rao & João L. Assunção, 1996. "Asymmetric Reference Price Effects and Dynamic Pricing Policies," Marketing Science, INFORMS, vol. 15(1), pages 60-85.
    11. Chen, Xu & Wang, Xiaojun, 2015. "Free or bundled: Channel selection decisions under different power structures," Omega, Elsevier, vol. 53(C), pages 11-20.
    12. Bhattacharjee, Sudip & Ramesh, R., 2000. "A multi-period profit maximizing model for retail supply chain management: An integration of demand and supply-side mechanisms," European Journal of Operational Research, Elsevier, vol. 122(3), pages 584-601, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magdalena Leithner & Christian Fikar, 2022. "A simulation model to investigate impacts of facilitating quality data within organic fresh food supply chains," Annals of Operations Research, Springer, vol. 314(2), pages 529-550, July.
    2. Ioannis Margaritis & Michael Madas & Maro Vlachopoulou, 2022. "Big Data Applications in Food Supply Chain Management: A Conceptual Framework," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    3. Kabadurmus, Ozgur & Kayikci, Yaşanur & Demir, Sercan & Koc, Basar, 2023. "A data-driven decision support system with smart packaging in grocery store supply chains during outbreaks," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    4. Aversa, Joseph & Hernandez, Tony & Doherty, Sean, 2021. "Incorporating big data within retail organizations: A case study approach," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).
    5. Roßmann, Bernhard & Canzaniello, Angelo & von der Gracht, Heiko & Hartmann, Evi, 2018. "The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 135-149.
    6. Simonetto, Marco & Sgarbossa, Fabio & Battini, Daria & Govindan, Kannan, 2022. "Closed loop supply chains 4.0: From risks to benefits through advanced technologies. A literature review and research agenda," International Journal of Production Economics, Elsevier, vol. 253(C).
    7. Damianos P. Sakas & Ioannis Dimitrios G. Kamperos & Panagiotis Reklitis, 2021. "Estimating Risk Perception Effects on Courier Companies’ Online Customer Behavior during a Crisis, Using Crowdsourced Data," Sustainability, MDPI, vol. 13(22), pages 1-26, November.
    8. Pan Liu & Shu-ping Yi, 2018. "Investment decision-making and coordination of a three-stage supply chain considering Data Company in the Big Data era," Annals of Operations Research, Springer, vol. 270(1), pages 255-271, November.
    9. Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).
    10. Mohamed Ben-Daya & Elkafi Hassini & Zied Bahroun & Hafsa Saeed, 2023. "Optimal pricing in the presence of IoT investment and quality-dependent demand," Annals of Operations Research, Springer, vol. 324(1), pages 869-892, May.
    11. Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2019. "Technology in the 21st century: New challenges and opportunities," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 321-335.
    12. Man Yang & Tao Zhang, 2023. "Demand forecasting and information sharing of a green supply chain considering data company," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-28, July.
    13. Ahmed Zainul Abideen & Veera Pandiyan Kaliani Sundram & Jaafar Pyeman & Abdul Kadir Othman & Shahryar Sorooshian, 2021. "Food Supply Chain Transformation through Technology and Future Research Directions—A Systematic Review," Logistics, MDPI, vol. 5(4), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaojun & Li, Dong, 2012. "A dynamic product quality evaluation based pricing model for perishable food supply chains," Omega, Elsevier, vol. 40(6), pages 906-917.
    2. Buisman, M.E. & Haijema, R. & Bloemhof-Ruwaard, J.M., 2019. "Discounting and dynamic shelf life to reduce fresh food waste at retailers," International Journal of Production Economics, Elsevier, vol. 209(C), pages 274-284.
    3. Pırıl Tekin & Rızvan Erol, 2017. "A New Dynamic Pricing Model for the Effective Sustainability of Perishable Product Life Cycle," Sustainability, MDPI, vol. 9(8), pages 1-22, July.
    4. Chen, Jing & Dong, Ming & Rong, Ying & Yang, Liang, 2018. "Dynamic pricing for deteriorating products with menu cost," Omega, Elsevier, vol. 75(C), pages 13-26.
    5. Grigoriev, A. & Hiller, B. & Marban, S. & Vredeveld, T. & van der Zwaan, G.R.J., 2010. "Dynamic pricing problems with elastic demand," Research Memorandum 053, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    6. Sibdari, Soheil & Pyke, David F., 2010. "A competitive dynamic pricing model when demand is interdependent over time," European Journal of Operational Research, Elsevier, vol. 207(1), pages 330-338, November.
    7. Guowei Liu & Jianxiong Zhang & Wansheng Tang, 2015. "Joint dynamic pricing and investment strategy for perishable foods with price-quality dependent demand," Annals of Operations Research, Springer, vol. 226(1), pages 397-416, March.
    8. Pan, Fei & Zhou, Wei & Fan, Tijun & Li, Shuxia & Zhang, Chong, 2021. "Deterioration rate variation risk for sustainable cross-docking service operations," International Journal of Production Economics, Elsevier, vol. 232(C).
    9. Lin, Kyle Y. & Sibdari, Soheil Y., 2009. "Dynamic price competition with discrete customer choices," European Journal of Operational Research, Elsevier, vol. 197(3), pages 969-980, September.
    10. Syed Asif Raza & Rafi Ashrafi & Ali Akgunduz, 2020. "A bibliometric analysis of revenue management in airline industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(6), pages 436-465, December.
    11. Cao, Ping & Li, Jianbin & Yan, Hong, 2012. "Optimal dynamic pricing of inventories with stochastic demand and discounted criterion," European Journal of Operational Research, Elsevier, vol. 217(3), pages 580-588.
    12. Mohamed Ben-Daya & Elkafi Hassini & Zied Bahroun & Hafsa Saeed, 2023. "Optimal pricing in the presence of IoT investment and quality-dependent demand," Annals of Operations Research, Springer, vol. 324(1), pages 869-892, May.
    13. Dan Dobrotă & Ionela Rotaru & Florin Adrian Nicolescu & Mădălina Marin, 2019. "Improving the Sustainability of the Manufacturing Process by Constructively Optimizing the Parts “Transition Type Fitting”," Sustainability, MDPI, vol. 11(19), pages 1-18, October.
    14. Aldric Vives & Marta Jacob & Marga Payeras, 2018. "Revenue management and price optimization techniques in the hotel sector," Tourism Economics, , vol. 24(6), pages 720-752, September.
    15. Bernardo Bertoldi & Chiara Giachino & Alberto Pastore, 2016. "Strategic pricing management in the omnichannel era," MERCATI & COMPETITIVIT?, FrancoAngeli Editore, vol. 2016(4), pages 131-152.
    16. Maxime C. Cohen & Ngai-Hang Zachary Leung & Kiran Panchamgam & Georgia Perakis & Anthony Smith, 2017. "The Impact of Linear Optimization on Promotion Planning," Operations Research, INFORMS, vol. 65(2), pages 446-468, April.
    17. Dasci, A. & Karakul, M., 2009. "Two-period dynamic versus fixed-ratio pricing in a capacity constrained duopoly," European Journal of Operational Research, Elsevier, vol. 197(3), pages 945-968, September.
    18. Zhang, Xiunian & Lam, Jasmine Siu Lee, 2018. "Shipping mode choice in cold chain from a value-based management perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 147-167.
    19. Pak, K. & Piersma, N., 2002. "airline revenue management," ERIM Report Series Research in Management ERS-2002-12-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Raut, Rakesh D. & Gardas, Bhaskar B. & Narwane, Vaibhav S. & Narkhede, Balkrishna E., 2019. "Improvement in the food losses in fruits and vegetable supply chain - a perspective of cold third-party logistics approach," Operations Research Perspectives, Elsevier, vol. 6(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:17:p:5127-5141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.