IDEAS home Printed from https://ideas.repec.org/a/pal/jorapm/v23y2024i2d10.1057_s41272-023-00438-6.html
   My bibliography  Save this article

Price promotion optimization model for multiperiod planning: a case study of beauty category products sold in a convenience store chain

Author

Listed:
  • Naragain Phumchusri

    (Chulalongkorn University)

  • Thiti Chewcharat

    (Chulalongkorn University)

  • Supawish Kanokpongsakorn

    (Chulalongkorn University)

Abstract

Pricing strategy is vital in the retail sector as prices play an important role in driving revenues and profits. However, few studies have been conducted on retail promotion optimization, particularly amid the COVID-19 situation. This study aims to leverage statistical models to examine the effects of price promotion and other factors on sales during the COVID-19 period. In addition, an optimization model is proposed to maximize the profitability of a retail store through strategies for optimal promotional pricing. In this study, monthly sales data in four product categories with 245 stock keeping units from July 2020 to June 2022 from a case study convenience store chain were retrieved and preprocessed. Subsequently, statistical models, such as the autoregressive distributed lag model OWN and the autoregressive distributed lag model CROSS, were implemented to examine the effects of price, promotion and other factors on sales. In addition, factors such as price elasticity and cannibalization were extracted and analyzed from the demand models. An optimization model was built in accordance with the demand model to maximize the total profit of the retailer over a certain period by determining the strategy for optimal promotional pricing. Finally, sensitivity analyses were performed to explain the dynamics of the parameters involved in the optimization model. The methodology, results and insights from this research provide a preliminary framework to facilitate Thai retailers in optimizing their pricing strategies and achieving key business objectives.

Suggested Citation

  • Naragain Phumchusri & Thiti Chewcharat & Supawish Kanokpongsakorn, 2024. "Price promotion optimization model for multiperiod planning: a case study of beauty category products sold in a convenience store chain," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(2), pages 164-178, April.
  • Handle: RePEc:pal:jorapm:v:23:y:2024:i:2:d:10.1057_s41272-023-00438-6
    DOI: 10.1057/s41272-023-00438-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41272-023-00438-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41272-023-00438-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    2. Harald J. van Heerde & Peter S. H. Leeflang & Dick R. Wittink, 2004. "Decomposing the Sales Promotion Bump with Store Data," Marketing Science, INFORMS, vol. 23(3), pages 317-334, December.
    3. Maxime C. Cohen & Ngai-Hang Zachary Leung & Kiran Panchamgam & Georgia Perakis & Anthony Smith, 2017. "The Impact of Linear Optimization on Promotion Planning," Operations Research, INFORMS, vol. 65(2), pages 446-468, April.
    4. Hübner, Alexander & Kuhn, Heinrich & Kühn, Sandro, 2016. "An efficient algorithm for capacitated assortment planning with stochastic demand and substitution," European Journal of Operational Research, Elsevier, vol. 250(2), pages 505-520.
    5. Baohong Sun, 2005. "Promotion Effect on Endogenous Consumption," Marketing Science, INFORMS, vol. 24(3), pages 430-443, July.
    6. Ma, Shaohui & Fildes, Robert, 2017. "A retail store SKU promotions optimization model for category multi-period profit maximization," European Journal of Operational Research, Elsevier, vol. 260(2), pages 680-692.
    7. Gerard J. Tellis & Fred S. Zufryden, 1995. "Tackling the Retailer Decision Maze: Which Brands to Discount, How Much, When and Why?," Marketing Science, INFORMS, vol. 14(3), pages 271-299.
    8. Ma, Shaohui & Fildes, Robert & Huang, Tao, 2016. "Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information," European Journal of Operational Research, Elsevier, vol. 249(1), pages 245-257.
    9. Pantano, Eleonora & Pizzi, Gabriele & Scarpi, Daniele & Dennis, Charles, 2020. "Competing during a pandemic? Retailers’ ups and downs during the COVID-19 outbreak," Journal of Business Research, Elsevier, vol. 116(C), pages 209-213.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Shaohui & Fildes, Robert, 2017. "A retail store SKU promotions optimization model for category multi-period profit maximization," European Journal of Operational Research, Elsevier, vol. 260(2), pages 680-692.
    2. Evgeny A. Antipov & Elena B. Pokryshevskaya, 2020. "Interpretable machine learning for demand modeling with high-dimensional data using Gradient Boosting Machines and Shapley values," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(5), pages 355-364, October.
    3. Guyt, Jonne, 2015. "Consumer choice models on the effect of promotions in retailing," Other publications TiSEM c310f652-d725-4764-aac7-b, Tilburg University, School of Economics and Management.
    4. Ailawadi, Kusum L. & Beauchamp, J.P. & Donthu, Naveen & Gauri, Dinesh K. & Shankar, Venkatesh, 2009. "Communication and Promotion Decisions in Retailing: A Review and Directions for Future Research," Journal of Retailing, Elsevier, vol. 85(1), pages 42-55.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Naragain Phumchusri & Warot Kosawanitchakarn & Sirawich Chawanapranee & Sirawish Srimook, 2023. "Evaluating promotional pricing effectiveness using convenience store daily sales data," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 22(5), pages 362-373, October.
    7. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    8. Neeraj Arora & Ty Henderson, 2007. "Embedded Premium Promotion: Why It Works and How to Make It More Effective," Marketing Science, INFORMS, vol. 26(4), pages 514-531, 07-08.
    9. Keun Hee Lee & Mali Abdollahian & Sergei Schreider & Sona Taheri, 2023. "Supply Chain Demand Forecasting and Price Optimisation Models with Substitution Effect," Mathematics, MDPI, vol. 11(11), pages 1-28, May.
    10. Veiga, Claudimar Pereira da & Veiga, Cássia Rita Pereira da & Puchalski, Weslly & Coelho, Leandro dos Santos & Tortato, Ubiratã, 2016. "Demand forecasting based on natural computing approaches applied to the foodstuff retail segment," Journal of Retailing and Consumer Services, Elsevier, vol. 31(C), pages 174-181.
    11. Kusum L. Ailawadi & Bari A. Harlam & Jacques César & David Trounce, 2007. "Practice Prize Report—Quantifying and Improving Promotion Effectiveness at CVS," Marketing Science, INFORMS, vol. 26(4), pages 566-575, 07-08.
    12. Tomohiro Ando, 2008. "Measuring the baseline sales and the promotion effect for incense products: a Bayesian state-space modeling approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 763-780, December.
    13. Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2019. "Forecasting retailer product sales in the presence of structural change," European Journal of Operational Research, Elsevier, vol. 279(2), pages 459-470.
    14. Toby Watt & Walter Beckert & Richard Smith & Laura Cornelsen, 2023. "The impact of price promotions on sales of unhealthy food and drink products in British retail stores," Health Economics, John Wiley & Sons, Ltd., vol. 32(1), pages 25-46, January.
    15. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    16. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    17. Glady, Nicolas & Lemmens, Aurélie & Croux, Christophe, 2015. "Unveiling the relationship between the transaction timing, spending and dropout behavior of customers," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 78-93.
    18. Karray, Salma & Martín-Herrán, Guiomar & Zaccour, Georges, 2020. "Pricing of demand-related products: Can ignoring cross-category effect be a smart choice?," International Journal of Production Economics, Elsevier, vol. 223(C).
    19. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "The M5 competition: Background, organization, and implementation," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1325-1336.
    20. Chethana Dharmawardane & Ville Sillanpää & Jan Holmström, 2021. "High-frequency forecasting for grocery point-of-sales: intervention in practice and theoretical implications for operational design," Operations Management Research, Springer, vol. 14(1), pages 38-60, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorapm:v:23:y:2024:i:2:d:10.1057_s41272-023-00438-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.