IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v58y2010i5p1469-1480.html
   My bibliography  Save this article

A Computable Plug-In Estimator of Minimum Volume Sets for Novelty Detection

Author

Listed:
  • Chiwoo Park

    (Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas 77843)

  • Jianhua Z. Huang

    (Department of Statistics, Texas A&M University, College Station, Texas 77843)

  • Yu Ding

    (Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas 77843)

Abstract

A minimum volume set of a probability density is a region of minimum size among the regions covering a given probability mass of the density. Effective methods for finding the minimum volume sets are very useful for detecting failures or anomalies in commercial and security applications---a problem known as novelty detection . One theoretical approach of estimating the minimum volume set is to use a density level set where a kernel density estimator is plugged into the optimization problem that yields the appropriate level. Such a plug-in estimator is not of practical use because solving the corresponding minimization problem is usually intractable. A modified plug-in estimator was proposed by Hyndman in 1996 to overcome the computation difficulty of the theoretical approach but is not well studied in the literature. In this paper, we provide theoretical support to this estimator by showing its asymptotic consistency. We also show that this estimator is very competitive to other existing novelty detection methods through an extensive empirical study.

Suggested Citation

  • Chiwoo Park & Jianhua Z. Huang & Yu Ding, 2010. "A Computable Plug-In Estimator of Minimum Volume Sets for Novelty Detection," Operations Research, INFORMS, vol. 58(5), pages 1469-1480, October.
  • Handle: RePEc:inm:oropre:v:58:y:2010:i:5:p:1469-1480
    DOI: 10.1287/opre.1100.0825
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1100.0825
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1100.0825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Baíllo, Amparo, 2003. "Total error in a plug-in estimator of level sets," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 411-417, December.
    2. Dolia, A.N. & Harris, C.J. & Shawe-Taylor, J.S. & Titterington, D.M., 2007. "Kernel ellipsoidal trimming," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 309-324, September.
    3. Cadre, BenoI^t, 2006. "Kernel estimation of density level sets," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 999-1023, April.
    4. Rocco S., Claudio M. & Zio, Enrico, 2007. "A support vector machine integrated system for the classification of operation anomalies in nuclear components and systems," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 593-600.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qianying JIN & Kristiaan KERSTENS & Ignace VAN DE WOESTYNE, 2023. "Convex and Nonconvex Nonparametric Frontier-based Classification Methods for Anomaly Detection," Working Papers 2023-EQM-01, IESEG School of Management.
    2. Qianying Jin & Kristiaan Kerstens & Ignace Van de Woestyne, 2024. "Convex and nonconvex nonparametric frontier-based classification methods for anomaly detection," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1213-1239, December.
    3. Irad Ben-Gal & Marcelo Bacher & Morris Amara & Erez Shmueli, 2023. "A Nonparametric Subspace Analysis Approach with Application to Anomaly Detection Ensembles," INFORMS Joural on Data Science, INFORMS, vol. 2(2), pages 99-115, October.
    4. J Morio & R Pastel, 2012. "Plug-in estimation of d-dimensional density minimum volume set of a rare event in a complex system," Journal of Risk and Reliability, , vol. 226(3), pages 337-345, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mammen, Enno & Polonik, Wolfgang, 2013. "Confidence regions for level sets," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 202-214.
    2. Dau, Hai Dang & Laloë, Thomas & Servien, Rémi, 2020. "Exact asymptotic limit for kernel estimation of regression level sets," Statistics & Probability Letters, Elsevier, vol. 161(C).
    3. Leying Guan & Robert Tibshirani, 2022. "Prediction and outlier detection in classification problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 524-546, April.
    4. Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    5. Ota, Shuhei & Kimura, Mitsuhiro, 2017. "A statistical dependent failure detection method for n-component parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 376-382.
    6. Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
    7. Christopher R. Genovese & Marco Perone-Pacifico & Isabella Verdinelli & Larry Wasserman, 2016. "Non-parametric inference for density modes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 99-126, January.
    8. Wen, Zhixun & Pei, Haiqing & Liu, Hai & Yue, Zhufeng, 2016. "A Sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 170-179.
    9. Yang, Chunzhen & Liu, Jingquan & Zeng, Yuyun & Xie, Guangyao, 2019. "Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model," Renewable Energy, Elsevier, vol. 133(C), pages 433-441.
    10. Zhang, Xinwei & Feng, Yong & Chen, Jinglong & Liu, Zijun & Wang, Jun & Huang, Hong, 2024. "Knowledge distillation-optimized two-stage anomaly detection for liquid rocket engine with missing multimodal data," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Yen-Chi Chen & Christopher R. Genovese & Larry Wasserman, 2017. "Density Level Sets: Asymptotics, Inference, and Visualization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1684-1696, October.
    12. Hernandez-Perdomo, Elvis & Guney, Yilmaz & Rocco, Claudio M., 2019. "A reliability model for assessing corporate governance using machine learning techniques," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 220-231.
    13. Xiaochun Meng & James W. Taylor & Souhaib Ben Taieb & Siran Li, 2020. "Scores for Multivariate Distributions and Level Sets," Papers 2002.09578, arXiv.org, revised Jun 2023.
    14. J Morio & R Pastel, 2012. "Plug-in estimation of d-dimensional density minimum volume set of a rare event in a complex system," Journal of Risk and Reliability, , vol. 226(3), pages 337-345, June.
    15. Elena Di Bernardino & Thomas Laloë & Véronique Maume-Deschamps & Clémentine Prieur, 2013. "Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory," Post-Print hal-00580624, HAL.
    16. Zhang, Liangwei & Lin, Jing & Karim, Ramin, 2015. "An angle-based subspace anomaly detection approach to high-dimensional data: With an application to industrial fault detection," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 482-497.
    17. King, Maxwell L. & Zhang, Xibin & Akram, Muhammad, 2020. "Hypothesis testing based on a vector of statistics," Journal of Econometrics, Elsevier, vol. 219(2), pages 425-455.
    18. Pedro Delicado & Philippe Vieu, 2017. "Choosing the most relevant level sets for depicting a sample of densities," Computational Statistics, Springer, vol. 32(3), pages 1083-1113, September.
    19. Yang, Jaemin & Kim, Jonghyun, 2020. "Accident diagnosis algorithm with untrained accident identification during power-increasing operation," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    20. Berthet, Philippe & Einmahl, John, 2020. "Cube Root Weak Convergence of Empirical Estimators of a Density Level Set," Other publications TiSEM 69103be2-c944-4ca1-b9e1-2, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:58:y:2010:i:5:p:1469-1480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.