IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v161y2020ics0167715220300249.html
   My bibliography  Save this article

Exact asymptotic limit for kernel estimation of regression level sets

Author

Listed:
  • Dau, Hai Dang
  • Laloë, Thomas
  • Servien, Rémi

Abstract

The asymptotic behavior of a plug-in kernel estimator of the regression level sets is studied. The exact asymptotic limit of the symmetric difference is derived for a given level and for an unknown level corresponding to a fixed probability.

Suggested Citation

  • Dau, Hai Dang & Laloë, Thomas & Servien, Rémi, 2020. "Exact asymptotic limit for kernel estimation of regression level sets," Statistics & Probability Letters, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:stapro:v:161:y:2020:i:c:s0167715220300249
    DOI: 10.1016/j.spl.2020.108721
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220300249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cadre, BenoI^t, 2006. "Kernel estimation of density level sets," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 999-1023, April.
    2. Polonik, Wolfgang & Wang, Zailong, 2005. "Estimation of regression contour clusters--an application of the excess mass approach to regression," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 227-249, June.
    3. Elena Di Bernardino & Thomas Laloë & Rémi Servien, 2015. "Erratum to: Estimating covariate functions associated to multivariate risks: a level set approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 527-527, July.
    4. Elena Di Bernardino & Thomas Laloë & Véronique Maume-Deschamps & Clémentine Prieur, 2013. "Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory," Post-Print hal-00580624, HAL.
    5. Yen-Chi Chen & Christopher R. Genovese & Larry Wasserman, 2017. "Density Level Sets: Asymptotics, Inference, and Visualization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1684-1696, October.
    6. Elena Bernardino & Thomas Laloë & Rémi Servien, 2015. "Estimating covariate functions associated to multivariate risks: a level set approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 497-526, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaochun Meng & James W. Taylor & Souhaib Ben Taieb & Siran Li, 2020. "Scores for Multivariate Distributions and Level Sets," Papers 2002.09578, arXiv.org, revised Jun 2023.
    2. Berthet, Philippe & Einmahl, John, 2020. "Cube Root Weak Convergence of Empirical Estimators of a Density Level Set," Discussion Paper 2020-015, Tilburg University, Center for Economic Research.
    3. Alberto Muñoz & Gabriel Martos & Javier Gonzalez, 2023. "Level Sets Semimetrics for Probability Measures with Applications in Hypothesis Testing," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-17, March.
    4. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
    5. Christopher R. Genovese & Marco Perone-Pacifico & Isabella Verdinelli & Larry Wasserman, 2016. "Non-parametric inference for density modes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 99-126, January.
    6. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    7. Prékopa, András & Lee, Jinwook, 2018. "Risk tomography," European Journal of Operational Research, Elsevier, vol. 265(1), pages 149-168.
    8. Pedro Delicado & Philippe Vieu, 2017. "Choosing the most relevant level sets for depicting a sample of densities," Computational Statistics, Springer, vol. 32(3), pages 1083-1113, September.
    9. Mammen, Enno & Polonik, Wolfgang, 2013. "Confidence regions for level sets," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 202-214.
    10. Elena Bernardino & Thomas Laloë & Rémi Servien, 2015. "Estimating covariate functions associated to multivariate risks: a level set approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 497-526, July.
    11. Biau, Gérard & Cadre, Benoît & Pelletier, Bruno, 2008. "Exact rates in density support estimation," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2185-2207, November.
    12. Delicado, Pedro & Vieu, Philippe, 2015. "Optimal level sets for bivariate density representation," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 1-18.
    13. Cholaquidis, Alejandro & Fraiman, Ricardo & Moreno, Leonardo, 2022. "Level set and density estimation on manifolds," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. Juan Fernández Sánchez & Wolfgang Trutschnig, 2015. "Conditioning-based metrics on the space of multivariate copulas and their interrelation with uniform and levelwise convergence and Iterated Function Systems," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1311-1336, December.
    15. Beck, Nicholas & Di Bernardino, Elena & Mailhot, Mélina, 2021. "Semi-parametric estimation of multivariate extreme expectiles," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    16. King, Maxwell L. & Zhang, Xibin & Akram, Muhammad, 2020. "Hypothesis testing based on a vector of statistics," Journal of Econometrics, Elsevier, vol. 219(2), pages 425-455.
    17. Burman, Prabir & Polonik, Wolfgang, 2009. "Multivariate mode hunting: Data analytic tools with measures of significance," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1198-1218, July.
    18. Leying Guan & Robert Tibshirani, 2022. "Prediction and outlier detection in classification problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 524-546, April.
    19. Chiwoo Park & Jianhua Z. Huang & Yu Ding, 2010. "A Computable Plug-In Estimator of Minimum Volume Sets for Novelty Detection," Operations Research, INFORMS, vol. 58(5), pages 1469-1480, October.
    20. Cousin, Areski & Di Bernardino, Elena, 2014. "On multivariate extensions of Conditional-Tail-Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 272-282.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:161:y:2020:i:c:s0167715220300249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.