IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v167y2017icp376-382.html
   My bibliography  Save this article

A statistical dependent failure detection method for n-component parallel systems

Author

Listed:
  • Ota, Shuhei
  • Kimura, Mitsuhiro

Abstract

Making a system redundant by combining identical components is a useful way to ensure a highly reliable system. However, the components of such systems may fail mutually, and if the components break down dependently, the reliability of the system decreases. Therefore, reliability analysis considering the dependence among the components is important in reliability assessment. This research proposes a statistical detection method of the dependent failure occurrence in n-component parallel systems that utilizes the failure occurrence times of the components. If we assume that the lifetime distribution of the components worsens if k-out-of-n components failed, the dependent failure occurrence can be found by identifying the change of the distribution. The performance of the proposed method is demonstrated by simulation studies.

Suggested Citation

  • Ota, Shuhei & Kimura, Mitsuhiro, 2017. "A statistical dependent failure detection method for n-component parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 376-382.
  • Handle: RePEc:eee:reensy:v:167:y:2017:i:c:p:376-382
    DOI: 10.1016/j.ress.2017.06.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016306883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.06.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Liangwei & Lin, Jing & Karim, Ramin, 2015. "An angle-based subspace anomaly detection approach to high-dimensional data: With an application to industrial fault detection," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 482-497.
    2. O’Connor, Andrew & Mosleh, Ali, 2016. "A general cause based methodology for analysis of common cause and dependent failures in system risk and reliability assessments," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 341-350.
    3. Zhang, Nan & Fouladirad, Mitra & Barros, Anne, 2017. "Maintenance analysis of a two-component load-sharing system," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 67-74.
    4. Hernandez-Fajardo, Isaac & Dueñas-Osorio, Leonardo, 2013. "Probabilistic study of cascading failures in complex interdependent lifeline systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 260-272.
    5. Rocco S., Claudio M. & Zio, Enrico, 2007. "A support vector machine integrated system for the classification of operation anomalies in nuclear components and systems," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 593-600.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eryilmaz, Serkan & Ozkut, Murat, 2020. "Optimization problems for a parallel system with multiple types of dependent components," Reliability Engineering and System Safety, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moghaddass, Ramin & Sheng, Shuangwen, 2019. "An anomaly detection framework for dynamic systems using a Bayesian hierarchical framework," Applied Energy, Elsevier, vol. 240(C), pages 561-582.
    2. Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Park, Jae-Hyun, 2017. "Time-dependent reliability of wireless networks with dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 47-61.
    4. Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
    5. Federico Antonello & Piero Baraldi & Enrico Zio & Luigi Serio, 2022. "A Novel Metric to Evaluate the Association Rules for Identification of Functional Dependencies in Complex Technical Infrastructures," Environment Systems and Decisions, Springer, vol. 42(3), pages 436-449, September.
    6. Yan-Feng Li & Hong-Zhong Huang & Jinhua Mi & Weiwen Peng & Xiaomeng Han, 2022. "Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability," Annals of Operations Research, Springer, vol. 311(1), pages 195-209, April.
    7. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    8. Monsalve, Mauricio & de la Llera, Juan Carlos, 2019. "Data-driven estimation of interdependencies and restoration of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 167-180.
    9. Yu, Juanya & Sharma, Neetesh & Gardoni, Paolo, 2024. "Functional connectivity analysis for modeling flow in infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    10. Heracleous, Constantinos & Kolios, Panayiotis & Panayiotou, Christos G. & Ellinas, Georgios & Polycarpou, Marios M., 2017. "Hybrid systems modeling for critical infrastructures interdependency analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 89-101.
    11. Nezakati, Ensiyeh & Razmkhah, Mostafa, 2020. "Reliability analysis of a load sharing k-out-of-n:F degradation system with dependent competing failures," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    12. Azzolin, Alberto & Dueñas-Osorio, Leonardo & Cadini, Francesco & Zio, Enrico, 2018. "Electrical and topological drivers of the cascading failure dynamics in power transmission networks," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 196-206.
    13. Ali Salmasnia & Ali Talesh-Kazemi, 2022. "Integrating inventory planning, pricing and maintenance for perishable products in a two-component parallel manufacturing system with common cause failures," Operational Research, Springer, vol. 22(2), pages 1235-1265, April.
    14. Chiwoo Park & Jianhua Z. Huang & Yu Ding, 2010. "A Computable Plug-In Estimator of Minimum Volume Sets for Novelty Detection," Operations Research, INFORMS, vol. 58(5), pages 1469-1480, October.
    15. Bao, Han & Zhang, Hongbin & Shorthill, Tate & Chen, Edward & Lawrence, Svetlana, 2023. "Quantitative evaluation of common cause failures in high safety-significant safety-related digital instrumentation and control systems in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    16. Wen, Zhixun & Pei, Haiqing & Liu, Hai & Yue, Zhufeng, 2016. "A Sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 170-179.
    17. Fan, Mengfei & Zeng, Zhiguo & Zio, Enrico & Kang, Rui & Chen, Ying, 2018. "A stochastic hybrid systems model of common-cause failures of degrading components," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 159-170.
    18. Thorben Kaul & Tobias Meyer & Walter Sextro, 2017. "Formulation of reliability-related objective functions for design of intelligent mechatronic systems," Journal of Risk and Reliability, , vol. 231(4), pages 390-399, August.
    19. Zhao, Yixin & Cai, Baoping & Kang, Henry Hooi-Siang & Liu, Yiliu, 2023. "Cascading failure analysis of multistate loading dependent systems with application in an overloading piping network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    20. Yang, Chunzhen & Liu, Jingquan & Zeng, Yuyun & Xie, Guangyao, 2019. "Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model," Renewable Energy, Elsevier, vol. 133(C), pages 433-441.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:167:y:2017:i:c:p:376-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.