IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v21y2002i4p455-475.html
   My bibliography  Save this article

Profile Construction in Experimental Choice Designs for Mixed Logit Models

Author

Listed:
  • Zsolt Sándor

    (Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands)

  • Michel Wedel

    (Department of Marketing and Marketing Research, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands, and the University of Michigan Business School, 701 Tappan Street, Ann Arbor, Michigan 48109)

Abstract

A computationally attractive model for the analysis of conjoint choice experiments is the mixed multinomial logit model, a multinomial logit model in which it is assumed that the coefficients follow a (normal) distribution across subjects. This model offers the advantage over the standard multinomial logit model of accommodating heterogeneity in the coefficients of the choice model across subjects, a topic that has received considerable interest recently in the marketing literature. With the advent of such powerful models, the conjoint choice design deserves increased attention as well. Unfortunately, if one wants to apply the mixed logit model to the analysis of conjoint choice experiments, the problem arises that nothing is known about the efficiency of designs based on the standard logit for parameters of the mixed logit. The development of designs that are optimal for mixed logit models or other random effects models has not been previously addressed and is the topic of this paper. The development of efficient designs requires the evaluation of the information matrix of the mixed multinomial logit model. We derive an expression for the information matrix for that purpose. The information matrix of the mixed logit model does not have closed form, since it involves integration over the distribution of the random coefficients. In evaluating it we approximate the integrals through repeated samples from the multivariate normal distribution of the coefficients. Since the information matrix is not a scalar we use the determinant scaled by its dimension as a measure of design efficiency. This enables us to apply heuristic search algorithms to explore the design space for highly efficient designs. We build on previously published heuristics based on relabeling, swapping, and cycling of the attribute levels in the design. Designs with a base alternative are commonly used and considered to be important in conjoint choice analysis, since they provide a way to compare the utilities of pro- files in different choice sets. A base alternative is a product profile that is included in all choice sets of a design. There are several types of base alternatives, examples being a socalled outside alternative or an alternative constructed from the attribute levels in the design itself. We extend our design construction procedures for mixed logit models to include designs with a base alternative and investigate and compare four design classes: designs with two alternatives, with two alternatives plus a base alternative, and designs with three and with four alternatives. Our study provides compelling evidence that each of these mixed logit designs provide more efficient parameter estimates for the mixed logit model than their standard logit counterparts and yield higher predictive validity. As compared to designs with two alternatives, designs that include a base alternative are more robust to deviations from the parameter values assumed in the designs, while that robustness is even higher for designs with three and four alternatives, even if those have 33% and 50% less choice sets, respectively. Those designs yield higher efficiency and better predictive validity at lower burden to the respondent. It is noteworthy that our “best” choice designs, the 3- and 4-alternative designs, resulted not only in a substantial improvement in efficiency over the standard logit design but also in an expected predictive validity that is over 50% higher in most cases, a number that pales the increases in predictive validity achieved by refined model specifications.

Suggested Citation

  • Zsolt Sándor & Michel Wedel, 2002. "Profile Construction in Experimental Choice Designs for Mixed Logit Models," Marketing Science, INFORMS, vol. 21(4), pages 455-475, February.
  • Handle: RePEc:inm:ormksc:v:21:y:2002:i:4:p:455-475
    DOI: 10.1287/mksc.21.4.455.131
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.21.4.455.131
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.21.4.455.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joel Huber and Kenneth Train., 2000. "On the Similarity of Classical and Bayesian Estimates of Individual Mean Partworths," Economics Working Papers E00-289, University of California at Berkeley.
    2. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    3. Boris Goldengorin & Gerard Sierksma & Gert A. Tijssen & Michael Tso, 1999. "The Data-Correcting Algorithm for the Minimization of Supermodular Functions," Management Science, INFORMS, vol. 45(11), pages 1539-1551, November.
    4. Louis Anthony Cox Jr. & Weihsueh A. Chiu & David M. Hassenzahl & Daniel M. Kammen, 2000. "Response," Risk Analysis, John Wiley & Sons, vol. 20(3), pages 295-296, June.
    5. Arora, Neeraj & Huber, Joel, 2001. "Improving Parameter Estimates and Model Prediction by Aggregate Customization in Choice Experiments," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 28(2), pages 273-283, September.
    6. Rinus Haaijer & Michel Wedel & Marco Vriens & Tom Wansbeek, 1998. "Utility Covariances and Context Effects in Conjoint MNP Models," Marketing Science, INFORMS, vol. 17(3), pages 236-252.
    7. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    8. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    9. Allenby, Greg M & Lenk, Peter J, 1995. "Reassessing Brand Loyalty, Price Sensitivity, and Merchandising Effects on Consumer Brand Choice," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 281-289, July.
    10. Peter J. Lenk & Wayne S. DeSarbo & Paul E. Green & Martin R. Young, 1996. "Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs," Marketing Science, INFORMS, vol. 15(2), pages 173-191.
    11. Hamada M. & Martz H. F. & Reese C. S. & Wilson A. G., 2001. "Finding Near-Optimal Bayesian Experimental Designs via Genetic Algorithms," The American Statistician, American Statistical Association, vol. 55, pages 175-181, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard G. Newell & Juha Siikamäki, 2014. "Nudging Energy Efficiency Behavior: The Role of Information Labels," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(4), pages 555-598.
    2. Useche, Pilar & Barham, Bradford L. & Foltz, Jeremy D., 2005. "A Trait Specific Model of GM Crop Adoption among U.S. Corn Farmers in the Upper Midwest," 2005 Annual meeting, July 24-27, Providence, RI 19202, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Jie Yu & Peter Goos & Martina Vandebroek, 2009. "Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity," Marketing Science, INFORMS, vol. 28(1), pages 122-135, 01-02.
    4. repec:rre:publsh:v:38:y:2008:i:3:p:395-415 is not listed on IDEAS
    5. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    6. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    7. Robert Zeithammer & Peter Lenk, 2006. "Bayesian estimation of multivariate-normal models when dimensions are absent," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 241-265, September.
    8. Don Fullerton & Li Gan & Miwa Hattori, 2015. "A model to evaluate vehicle emission incentive policies in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(1), pages 79-108, January.
    9. Frick, Bernd & Barros, Carlos Pestana & Prinz, Joachim, 2010. "Analysing head coach dismissals in the German "Bundesliga" with a mixed logit approach," European Journal of Operational Research, Elsevier, vol. 200(1), pages 151-159, January.
    10. Meredith Fowlie, 2010. "Emissions Trading, Electricity Restructuring, and Investment in Pollution Abatement," American Economic Review, American Economic Association, vol. 100(3), pages 837-869, June.
    11. Epstein, Andrew J., 2010. "Effects of report cards on referral patterns to cardiac surgeons," Journal of Health Economics, Elsevier, vol. 29(5), pages 718-731, September.
    12. Deka, Devajyoti & Carnegie, Jon, 2021. "Predicting transit mode choice of New Jersey workers commuting to New York City from a stated preference survey," Journal of Transport Geography, Elsevier, vol. 91(C).
    13. Useche, Pilar & Barham, Bradford & Foltz, Jeremy, 2006. "A Trait Specific Model of GM Crop Adoption by Minnesota and Wisconsin Corn Farmers," Working Papers 201525, University of Wisconsin-Madison, Department of Agricultural and Applied Economics, Food System Research Group.
    14. Scheufele, Gabriela & Bennett, Jeffrey W., 2010. "Ordering effects and strategic response in discrete choice experiments," Research Reports 107743, Australian National University, Environmental Economics Research Hub.
    15. F Alpizar & F Carlsson & P Martinsson, 2003. "Using Choice Experiments for Non-Market Valuation," Economic Issues Journal Articles, Economic Issues, vol. 8(1), pages 83-110, March.
    16. Stephane Hess & John W. Polak, 2004. "An analysis of parking behaviour using discrete choice models calibrated on SP datasets," ERSA conference papers ersa04p60, European Regional Science Association.
    17. Tagliafierro, C. & Boeri, M. & Longo, A. & Hutchinson, W.G., 2016. "Stated preference methods and landscape ecology indicators: An example of transdisciplinarity in landscape economic valuation," Ecological Economics, Elsevier, vol. 127(C), pages 11-22.
    18. Siikamaki, Juha & Layton, David F., 2007. "Discrete choice survey experiments: A comparison using flexible methods," Journal of Environmental Economics and Management, Elsevier, vol. 53(1), pages 122-139, January.
    19. Campbell, Danny & Hutchinson, W. George & Scarpa, Riccardo, 2006. "Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes: Evidence from the Rural Environment Protection Scheme in Irel," Sustainability Indicators and Environmental Valuation Working Papers 12220, Fondazione Eni Enrico Mattei (FEEM).
    20. Erdem, Seda & Rigby, Dan & Wossink, Ada, 2012. "Using best–worst scaling to explore perceptions of relative responsibility for ensuring food safety," Food Policy, Elsevier, vol. 37(6), pages 661-670.
    21. Hoyos, David, 2010. "The state of the art of environmental valuation with discrete choice experiments," Ecological Economics, Elsevier, vol. 69(8), pages 1595-1603, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:21:y:2002:i:4:p:455-475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.