IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0012003.html
   My bibliography  Save this paper

On the Similarity of Classical and Bayesian Estimates of Individual Mean Partworths

Author

Listed:
  • Joel Huber

    (Fuqua School of Business, Duke University)

  • Kenneth Train

    (University of California, Berkeley)

Abstract

An exciting development in modeling has been the ability to estimate reliable individual-level parameters for choice models. Individual partworths derived from these parameters have been very useful in segmentation, identifying extreme individuals, and in creating appropriate choice simulators. In marketing, hierarchical Bayes models have taken the lead in combining information about the aggregate distribution of tastes with the individual's choices to arrive at a conditional estimate of the individual's parameters. In economics, the same behavioral model has been derived from a classical rather than a Bayesian perspective. That is, instead of Gibbs sampling, the method of maximum simulated likelihood provides estimates of both the aggregate and the individual parameters. This paper explores the similarities and differences between classical and Bayesian methods and shows that they result in virtually equivalent conditional estimates of partworths for customers. Thus, the choice between Bayesian and classical estimation becomes one of implementation convenience and philosophical orientation, rather than pragmatic usefulness.

Suggested Citation

  • Joel Huber & Kenneth Train, 2001. "On the Similarity of Classical and Bayesian Estimates of Individual Mean Partworths," Econometrics 0012003, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpem:0012003
    Note: 18 pages, Acrobat .pdf
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0012/0012003.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    2. Peter J. Lenk & Wayne S. DeSarbo & Paul E. Green & Martin R. Young, 1996. "Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs," Marketing Science, INFORMS, vol. 15(2), pages 173-191.
    3. Allenby, Greg M. & Rossi, Peter E., 1998. "Marketing models of consumer heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 57-78, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Zeithammer & Peter Lenk, 2006. "Bayesian estimation of multivariate-normal models when dimensions are absent," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 241-265, September.
    2. Jianhua Wang & Jiaye Ge & Yuting Ma, 2018. "Urban Chinese Consumers’ Willingness to Pay for Pork with Certified Labels: A Discrete Choice Experiment," Sustainability, MDPI, vol. 10(3), pages 1-14, February.
    3. Denzil G. Fiebig & Michael P. Keane & Jordan Louviere & Nada Wasi, 2010. "The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity," Marketing Science, INFORMS, vol. 29(3), pages 393-421, 05-06.
    4. Michael P. Keane & Nada Wasi, 2013. "The Structure of Consumer Taste Heterogeneity in Revealed vs. Stated Preference Data," Economics Papers 2013-W10, Economics Group, Nuffield College, University of Oxford.
    5. Carsten Herbes & Johannes Dahlin & Peter Kurz, 2020. "Consumer Willingness To Pay for Proenvironmental Attributes of Biogas Digestate-Based Potting Soil," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    6. William Greene, 2007. "Discrete Choice Modeling," Working Papers 07-6, New York University, Leonard N. Stern School of Business, Department of Economics.
    7. Marc R. Dotson & Joachim Büschken & Greg M. Allenby, 2020. "Explaining Preference Heterogeneity with Mixed Membership Modeling," Marketing Science, INFORMS, vol. 39(2), pages 407-426, March.
    8. Leonardo Cei & Edi Defrancesco & Paola Gatto & Francesco Pagliacci, 2023. "Pay more for me, I’m from the mountains! The role of the EU Mountain Product term and other credence attributes in consumers’ valuation of lamb meat," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 11(1), pages 1-21, December.
    9. Alex Burnap & John Hauser, 2018. "Predicting "Design Gaps" in the Market: Deep Consumer Choice Models under Probabilistic Design Constraints," Papers 1812.11067, arXiv.org.
    10. Hu, Wuyang & Adamowicz, Wiktor L. & Veeman, Michele M., 2005. "Bayesian Analysis of Consumer Choices with Taste, Context, Reference Point and Individual Scale Effects," 2005 Annual meeting, July 24-27, Providence, RI 19296, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. Zsolt Sándor & Michel Wedel, 2002. "Profile Construction in Experimental Choice Designs for Mixed Logit Models," Marketing Science, INFORMS, vol. 21(4), pages 455-475, February.
    12. Keane, Michael P. & Wasi, Nada, 2016. "How to model consumer heterogeneity? Lessons from three case studies on SP and RP data," Research in Economics, Elsevier, vol. 70(2), pages 197-231.
    13. Revelt, David & Train, Kenneth, 2000. "Customer-Specific Taste Parameters and Mixed Logit: Households' Choice of Electricity Supplier," Department of Economics, Working Paper Series qt1900p96t, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    14. Nakamura, A., 2011. "Estimating switching costs after introducing Fixed-Mobile Convergence in Japan," Information Economics and Policy, Elsevier, vol. 23(1), pages 59-71, March.
    15. Kiran Tomlinson & Johan Ugander & Austin R. Benson, 2021. "Choice Set Confounding in Discrete Choice," Papers 2105.07959, arXiv.org, revised Aug 2021.
    16. Byun, Hyunsuk & Lee, Chul-Yong, 2017. "Analyzing Korean consumers’ latent preferences for electricity generation sources with a hierarchical Bayesian logit model in a discrete choice experiment," Energy Policy, Elsevier, vol. 105(C), pages 294-302.
    17. repec:ebl:ecbull:v:30:y:2010:i:1:p:437-449 is not listed on IDEAS
    18. Wang, Shuxian & Wu, Linhai & Zhu, Dian & Wang, Hongsha & Xu, Lingling, 2014. "Chinese consumers’ preferences and willingness to pay for traceable food attributes: The case of pork," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 165639, Agricultural and Applied Economics Association.
    19. Francisco Javier Amador & Rosa Marina González & Juan de Dios Ortúzar, 2004. "Preference heterogeneity and willingness to pay for travel time," Documentos de trabajo conjunto ULL-ULPGC 2004-12, Facultad de Ciencias Económicas de la ULPGC.
    20. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    21. Wu, Linhai & Wang, Shuxian & Zhu, Dian & Hu, Wuyang & Wang, Hongsha, 2015. "Chinese consumers’ preferences and willingness to pay for traceable food quality and safety attributes: The case of pork," China Economic Review, Elsevier, vol. 35(C), pages 121-136.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Lists

    This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:
    1. On the Similarity of Classical and Bayesian Estimates of Individual Mean Partworths (Marketing Letters 2001) in ReplicationWiki

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0012003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.