IDEAS home Printed from https://ideas.repec.org/p/cdl/econwp/qt7zm4f51b.html
   My bibliography  Save this paper

On the Similarity of Classical and Bayesian Estimates of Individual Mean Partworths

Author

Listed:
  • Huber, Joel
  • Train, Kenneth

Abstract

An exciting development in modeling has been the ability to estimate reliable individual-level parameters for choice models. Individual partworths derived from these parameters have been very useful in segmentation, identifying extreme individuals, and in creating appropriate choice simulators. In marketing, hierarchical Bayes models have taken the lead in combining information about the aggregate distribution of tastes with the individual's choices to arrive at a conditional estimate of the individual's parameters. In economics, the same behavioral model has been derived from a classical rather than a Bayesian perspective. That is, instead of Gibbs sampling, the method of maximum simulated likelihood provides estimates of both the aggregate and the individual parameters. This paper explores the similarities and differences between classical and Bayesian methods and shows that they result in virtually equivalent conditional estimates of partworths for customers. Thus, the choice between Bayesian and classical estimation becomes one of implementation convenience and philosophical orientation, rather than pragmatic usefulness.

Suggested Citation

  • Huber, Joel & Train, Kenneth, 2000. "On the Similarity of Classical and Bayesian Estimates of Individual Mean Partworths," Department of Economics, Working Paper Series qt7zm4f51b, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
  • Handle: RePEc:cdl:econwp:qt7zm4f51b
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/7zm4f51b.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter J. Lenk & Wayne S. DeSarbo & Paul E. Green & Martin R. Young, 1996. "Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs," Marketing Science, INFORMS, vol. 15(2), pages 173-191.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Zeithammer & Peter Lenk, 2006. "Bayesian estimation of multivariate-normal models when dimensions are absent," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 241-265, September.
    2. Charles Cunningham & Ken Deal & Yvonne Chen, 2010. "Adaptive Choice-Based Conjoint Analysis," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 3(4), pages 257-273, December.
    3. John Liechty & Duncan Fong & Eelko Huizingh & Arnaud Bruyn, 2008. "Hierarchical Bayesian conjoint models incorporating measurement uncertainty," Marketing Letters, Springer, vol. 19(2), pages 141-155, June.
    4. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2011. "Individually adapted sequential Bayesian conjoint-choice designs in the presence of consumer heterogeneity," International Journal of Research in Marketing, Elsevier, vol. 28(4), pages 378-388.
    5. Kick, Markus & Littich, Martina, 2015. "Brand and Reputation as Quality Signals on Regulated Markets," EconStor Preprints 182503, ZBW - Leibniz Information Centre for Economics.
    6. Theodoros Evgeniou & Constantinos Boussios & Giorgos Zacharia, 2005. "Generalized Robust Conjoint Estimation," Marketing Science, INFORMS, vol. 24(3), pages 415-429, May.
    7. Burbano, Vanessa & Padilla, Nicolas & Meier, Stephan, 2020. "Gender Differences in Preferences for Meaning at Work," IZA Discussion Papers 13053, Institute of Labor Economics (IZA).
    8. Yu-Cheng Ku & Tsun-Feng Chiang & Sheng-Mao Chang, 2017. "Is what you choose what you want?—outlier detection in choice-based conjoint analysis," Marketing Letters, Springer, vol. 28(1), pages 29-42, March.
    9. YiChun Miriam Liu & Jeff D. Brazell & Greg M. Allenby, 2022. "Non-linear pricing effects in conjoint analysis," Quantitative Marketing and Economics (QME), Springer, vol. 20(4), pages 397-430, December.
    10. Olivier Toubia & Duncan I. Simester & John R. Hauser & Ely Dahan, 2003. "Fast Polyhedral Adaptive Conjoint Estimation," Marketing Science, INFORMS, vol. 22(3), pages 273-303.
    11. Paul E. Green & Abba M. Krieger & Yoram Wind, 2001. "Thirty Years of Conjoint Analysis: Reflections and Prospects," Interfaces, INFORMS, vol. 31(3_supplem), pages 56-73, June.
    12. Robert Steiger & Eva Posch & Gottfried Tappeiner & Janette Walde, 2020. "Effects of climate change on tourism demand considering individual seasonal preferences," Working Papers 2020-08, Faculty of Economics and Statistics, University of Innsbruck.
    13. Hein, Maren & Goeken, Nils & Kurz, Peter & Steiner, Winfried J., 2022. "Using Hierarchical Bayes draws for improving shares of choice predictions in conjoint simulations: A study based on conjoint choice data," European Journal of Operational Research, Elsevier, vol. 297(2), pages 630-651.
    14. Schlereth, Christian & Skiera, Bernd & Schulz, Fabian, 2018. "Why do consumers prefer static instead of dynamic pricing plans? An empirical study for a better understanding of the low preferences for time-variant pricing plans," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1165-1179.
    15. Adriane Hartmann & Henrik Sattler, 2004. "Wie robust sind Methoden zur Präferenzmessung?," Schmalenbach Journal of Business Research, Springer, vol. 56(1), pages 3-22, February.
    16. Xinfang (Jocelyn) Wang & Jeffrey D. Camm & David J. Curry, 2009. "A Branch-and-Price Approach to the Share-of-Choice Product Line Design Problem," Management Science, INFORMS, vol. 55(10), pages 1718-1728, October.
    17. Atanu Adhikari, 2016. "Adjacent Price Anchoring and Consumer’s Willingness to Pay: A Bayesian Approach," Working papers 215, Indian Institute of Management Kozhikode.
    18. Carsten Herbes & Johannes Dahlin & Peter Kurz, 2020. "Consumer Willingness To Pay for Proenvironmental Attributes of Biogas Digestate-Based Potting Soil," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    19. B. P. S. Murthi & Sumit Sarkar, 2003. "The Role of the Management Sciences in Research on Personalization," Management Science, INFORMS, vol. 49(10), pages 1344-1362, October.
    20. Hauser, John R., 2014. "Consideration-set heuristics," Journal of Business Research, Elsevier, vol. 67(8), pages 1688-1699.

    More about this item

    Keywords

    C11; C13; C15; and C25;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:econwp:qt7zm4f51b. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/ibbrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.