IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i6p2908-2929.html
   My bibliography  Save this article

bsnsing: A Decision Tree Induction Method Based on Recursive Optimal Boolean Rule Composition

Author

Listed:
  • Yanchao Liu

    (Department of Industrial and Systems Engineering, Wayne State University, Detroit, Michigan 48202)

Abstract

This paper proposes a new mixed-integer programming (MIP) formulation to optimize split rule selection in the decision tree induction process and develops an efficient search algorithm that is able to solve practical instances of the MIP model faster than commercial solvers. The formulation is novel for it directly maximizes the Gini reduction, an effective split selection criterion that has never been modeled in a mathematical program for its nonconvexity. The proposed approach differs from other optimal classification tree models in that it does not attempt to optimize the whole tree; therefore, the flexibility of the recursive partitioning scheme is retained, and the optimization model is more amenable. The approach is implemented in an open-source R package named bsnsing. Benchmarking experiments on 75 open data sets suggest that bsnsing trees are the most capable of discriminating new cases compared with trees trained by other decision tree codes including the rpart, C50, party, and tree packages in R. Compared with other optimal decision tree packages, including DL8.5, OSDT, GOSDT, and indirectly more, bsnsing stands out in its training speed, ease of use, and broader applicability without losing in prediction accuracy.

Suggested Citation

  • Yanchao Liu, 2022. "bsnsing: A Decision Tree Induction Method Based on Recursive Optimal Boolean Rule Composition," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2908-2929, November.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:6:p:2908-2929
    DOI: 10.1287/ijoc.2022.1225
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.1225
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.1225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. W. Nick Street, 2005. "Oblique Multicategory Decision Trees Using Nonlinear Programming," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 25-31, February.
    2. Lukas Tanner & Mark Schreiber & Jenny G H Low & Adrian Ong & Thomas Tolfvenstam & Yee Ling Lai & Lee Ching Ng & Yee Sin Leo & Le Thi Puong & Subhash G Vasudevan & Cameron P Simmons & Martin L Hibberd , 2008. "Decision Tree Algorithms Predict the Diagnosis and Outcome of Dengue Fever in the Early Phase of Illness," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 2(3), pages 1-9, March.
    3. G. V. Kass, 1980. "An Exploratory Technique for Investigating Large Quantities of Categorical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 119-127, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    2. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    3. I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
    4. Yousaf Muhammad & Dey Sandeep Kumar, 2022. "Best proxy to determine firm performance using financial ratios: A CHAID approach," Review of Economic Perspectives, Sciendo, vol. 22(3), pages 219-239, September.
    5. Archana R. Panhalkar & Dharmpal D. Doye, 2020. "An approach of improving decision tree classifier using condensed informative data," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 431-445, December.
    6. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    7. Lea Piscitelli & Annalisa De Boni & Rocco Roma & Giovanni Ottomano Palmisano, 2023. "Carbon Farming: How to Support Farmers in Choosing the Best Management Strategies for Low-Impact Food Production," Land, MDPI, vol. 13(1), pages 1-16, December.
    8. H Seol & H Lee & S Kim & Y Park, 2008. "The impact of information technology on organizational efficiency in public services: a DEA-based DT approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(2), pages 231-238, February.
    9. Vanhoucke, Mario & Maenhout, Broos, 2009. "On the characterization and generation of nurse scheduling problem instances," European Journal of Operational Research, Elsevier, vol. 196(2), pages 457-467, July.
    10. Todor Krastevich, 2013. "Using Predictive Modeling to Improve Direct Marketing Performance," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 3, pages 25-55.
    11. Wei, Xiupeng & Kusiak, Andrew & Li, Mingyang & Tang, Fan & Zeng, Yaohui, 2015. "Multi-objective optimization of the HVAC (heating, ventilation, and air conditioning) system performance," Energy, Elsevier, vol. 83(C), pages 294-306.
    12. Adrien Ehrhardt & Christophe Biernacki & Vincent Vandewalle & Philippe Heinrich, 2019. "Feature quantization for parsimonious and interpretable predictive models," Papers 1903.08920, arXiv.org.
    13. Onur Doğan & Hakan Aşan & Ejder Ayç, 2015. "Use Of Data Mining Techniques In Advance Decision Making Processes In A Local Firm," European Journal of Business and Economics, Central Bohemia University, vol. 10(2), pages 6821:10-682, January.
    14. Jae-Dong Kim & Tae-Hyeong Kim & Sung Won Han, 2023. "Demand Forecasting of Spare Parts Using Artificial Intelligence: A Case Study of K-X Tanks," Mathematics, MDPI, vol. 11(3), pages 1-10, January.
    15. Agapito, Dora & Mendes, Julio & Valle, Patricia, 2011. "The Sea as a Connection between Residents and Tourists in Coastal Destinations: A Case in Algarve," Spatial and Organizational Dynamics Discussion Papers 2011-13, CIEO-Research Centre for Spatial and Organizational Dynamics, University of Algarve.
    16. Francisco Javier Rondán-Cataluña & Patricio E. Ramírez-Correa & Jorge Arenas-Gaitán & Muriel Ramírez-Santana & Elizabeth E. Grandón & Jorge Alfaro-Pérez, 2020. "Social Network Communications in Chilean Older Adults," IJERPH, MDPI, vol. 17(17), pages 1-17, August.
    17. Timmins, Christopher & Vissing, Ashley, 2022. "Environmental justice and Coasian bargaining: The role of race, ethnicity, and income in lease negotiations for shale gas," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    18. A. Israëls & J. Driel, 1983. "Use of the chi-square statistic for selecting explanatory variables in multiway tables," Quality & Quantity: International Journal of Methodology, Springer, vol. 17(2), pages 103-116, April.
    19. Nocella, Giuseppe & Stefani, Gianluca & Romano, Donato, 2011. "Preferences, trust and willingness to pay for food information: An analysis of the Italian Market," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114606, European Association of Agricultural Economists.
    20. Auld, Joshua & Mohammadian, Abolfazl (Kouros) & Doherty, Sean T., 2009. "Modeling activity conflict resolution strategies using scheduling process data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 386-400, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:6:p:2908-2929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.