Using Predictive Modeling to Improve Direct Marketing Performance
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Van den Poel, Dirk & Buckinx, Wouter, 2005.
"Predicting online-purchasing behaviour,"
European Journal of Operational Research, Elsevier, vol. 166(2), pages 557-575, October.
- W.R Buckinx & D. Van Den Poel, 2003. "Predicting Online Purchasing Behavior," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 03/195, Ghent University, Faculty of Economics and Business Administration.
- van Wezel, M.C. & Potharst, R., 2005. "Improved customer choice predictions using ensemble methods," Econometric Institute Research Papers EI 2005-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Jonker, J.-J. & Franses, Ph.H.B.F. & Piersma, N., 2002. "Evaluating Direct Marketing Campaigns: recent findings and future research topics," ERIM Report Series Research in Management ERS-2002-26-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- G. V. Kass, 1980. "An Exploratory Technique for Investigating Large Quantities of Categorical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 119-127, June.
- Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- M. Ballings & D. Van Den Poel, 2012. "The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/804, Ghent University, Faculty of Economics and Business Administration.
- J. D’Haen & D. Van Den Poel, 2013. "Model-supported business-to-business prospect prediction based on an iterative customer acquisition framework," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/863, Ghent University, Faculty of Economics and Business Administration.
- Katerina Shapoval & Thomas Setzer, 2018. "Next-Purchase Prediction Using Projections of Discounted Purchasing Sequences," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 60(2), pages 151-166, April.
- Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
- Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017.
"Beyond average energy consumption in the French residential housing market: A household classification approach,"
Energy Policy, Elsevier, vol. 107(C), pages 82-95.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," Post-Print hal-01386095, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," Working Papers hal-02475511, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," Working Papers hal-04141605, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," EconomiX Working Papers 2016-6, University of Paris Nanterre, EconomiX.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Post-Print hal-01586597, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," Post-Print hal-01386101, HAL.
- Carattini, Stefano & Gillingham, Kenneth & Meng, Xiangyu & Yoeli, Erez, 2024.
"Peer-to-peer solar and social rewards: Evidence from a field experiment,"
Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 340-370.
- Stefano Carattini & Kenneth Gillingham & Xiangyu Meng & Erez Yoeli, 2022. "Peer-to-Peer Solar and Social Rewards: Evidence from a Field Experiment," CESifo Working Paper Series 10173, CESifo.
- Stefano Carattini & Kenneth Gillingham & Xiangyu Meng & Erez Yoeli, 2024. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Natural Field Experiments 00793, The Field Experiments Website.
- Carattini, Stefano & Gillingham, Kenneth T. & Meng, Xiangyu & Yoeli, Erez, 2022. "Peer-to-peer solar and social rewards: evidence from a field experiment," LSE Research Online Documents on Economics 117362, London School of Economics and Political Science, LSE Library.
- Stefano Carattini & Kenneth Gillingham & Xiangyu Meng & Erez Yoeli, 2022. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Experimental Economics Center Working Paper Series 2022-02, Experimental Economics Center, Andrew Young School of Policy Studies, Georgia State University.
- Carattini, Stefano & Gillingham, Kenneth T. & Meng, Xiangyu & Yoeli, Erez, 2022. "Peer-to-peer solar and social rewards: evidence from a field experiment," LSE Research Online Documents on Economics 117361, London School of Economics and Political Science, LSE Library.
- Ghosh, Atish R. & Qureshi, Mahvash S. & Kim, Jun Il & Zalduendo, Juan, 2014.
"Surges,"
Journal of International Economics, Elsevier, vol. 92(2), pages 266-285.
- Mahvash S Qureshi & Mr. Atish R. Ghosh & Mr. Juan Zalduendo & Mr. Jun I Kim, 2012. "Surges," IMF Working Papers 2012/022, International Monetary Fund.
- Tomàs Aluja-Banet & Eduard Nafria, 2003. "Stability and scalability in decision trees," Computational Statistics, Springer, vol. 18(3), pages 505-520, September.
- I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
- Schwartz, Ira M. & York, Peter & Nowakowski-Sims, Eva & Ramos-Hernandez, Ana, 2017. "Predictive and prescriptive analytics, machine learning and child welfare risk assessment: The Broward County experience," Children and Youth Services Review, Elsevier, vol. 81(C), pages 309-320.
- Yousaf Muhammad & Dey Sandeep Kumar, 2022. "Best proxy to determine firm performance using financial ratios: A CHAID approach," Review of Economic Perspectives, Sciendo, vol. 22(3), pages 219-239, September.
- Yen-Chun Chou & Howard Hao-Chun Chuang, 2018. "A predictive investigation of first-time customer retention in online reservation services," Service Business, Springer;Pan-Pacific Business Association, vol. 12(4), pages 685-699, December.
- Ralf Elsner & Manfred Krafft & Arnd Huchzermeier, 2003. "Optimizing Rhenania's Mail-Order Business Through Dynamic Multilevel Modeling (DMLM)," Interfaces, INFORMS, vol. 33(1), pages 50-66, February.
- Bag, Sujoy & Tiwari, Manoj Kumar & Chan, Felix T.S., 2019. "Predicting the consumer's purchase intention of durable goods: An attribute-level analysis," Journal of Business Research, Elsevier, vol. 94(C), pages 408-419.
- Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
- Osman Taylan & Abdulaziz S. Alkabaa & Mustafa Tahsin Yılmaz, 2022. "Impact of COVID-19 on G20 countries: analysis of economic recession using data mining approaches," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-30, December.
- Archana R. Panhalkar & Dharmpal D. Doye, 2020. "An approach of improving decision tree classifier using condensed informative data," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 431-445, December.
- Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006.
"Deriving target selection rules from endogenously selected samples,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
- Richard Paap & Philip Hans Franses & Bas Donkers & Jedid-Jah Jonker, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562.
- Donkers, A.C.D. & Jonker, J.-J. & Franses, Ph.H.B.F. & Paap, R., 2001. "Deriving Target Selection Rules from Endogenously Selected Samples," ERIM Report Series Research in Management ERS-2001-68-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Mercedes Esteban-Bravo & Jose M. Vidal-Sanz & Gökhan Yildirim, 2014.
"Valuing Customer Portfolios with Endogenous Mass and Direct Marketing Interventions Using a Stochastic Dynamic Programming Decomposition,"
Marketing Science, INFORMS, vol. 33(5), pages 621-640, September.
- Vidal-Sanz, Jose M. & Yildirim, Gökhan, 2012. "Valuing customer portfolios with endogenous mass-and-direct-marketing interventions using a stochastic dynamic programming decomposition," DEE - Working Papers. Business Economics. WB wb121304, Universidad Carlos III de Madrid. Departamento de EconomÃa de la Empresa.
- Vicente-Cera, Isaías & Acevedo-Merino, Asunción & Nebot, Enrique & López-Ramírez, Juan Antonio, 2020. "Analyzing cruise ship itineraries patterns and vessels diversity in ports of the European maritime region: A hierarchical clustering approach," Journal of Transport Geography, Elsevier, vol. 85(C).
More about this item
JEL classification:
- M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bas:econst:y:2013:i:3:p:25-55. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Diana Dimitrova (email available below). General contact details of provider: https://edirc.repec.org/data/ikbasbg.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.