IDEAS home Printed from https://ideas.repec.org/a/aad/ejbejj/v10y2015i2p682.html
   My bibliography  Save this article

Use Of Data Mining Techniques In Advance Decision Making Processes In A Local Firm

Author

Listed:
  • Onur Doğan

    (Dokuz Eylül University, İzmir)

  • Hakan Aşan

    (Dokuz Eylül University, İzmir)

  • Ejder Ayç

    (Dokuz Eylül University, İzmir)

Abstract

In today’s competitive world, organizations need to make the right decisions to prolong their existence. Using non-scientific methods and making emotional decisions gave way to the use of scientific methods in the decision making process in this competitive area. Within this scope, many decision support models are still being developed in order to assist the decision makers and owners of organizations. It is easy to collect massive amount of data for organizations, but generally the problem is using this data to achieve economic advances. There is a critical need for specialization and automation to transform the data into the knowledge in big data sets. Data mining techniques are capable of providing description, estimation, prediction, classification, clustering, and association. Recently, many data mining techniques have been developed in order to find hidden patterns and relations in big data sets. It is important to obtain new correlations, patterns, and trends, which are understandable and useful to the decision makers. There have been many researches and applications focusing on different data mining techniques and methodologies.In this study, we aim to obtain understandable and applicable results from a large volume of record set that belong to a firm, which is active in the meat processing industry, by using data mining techniques. In the application part, firstly, data cleaning and data integration, which are the first steps of data mining process, are performed on the data in the database. With the aid of data cleaning and data integration, the data set was obtained, which is suitable for data mining. Then, various association rule algorithms were applied to this data set. This analysis revealed that finding unexplored patterns in the set of data would be beneficial for the decision makers of the firm. Finally, many association rules are obtained, which are useful for decision makers of the local firm.

Suggested Citation

  • Onur Doğan & Hakan Aşan & Ejder Ayç, 2015. "Use Of Data Mining Techniques In Advance Decision Making Processes In A Local Firm," European Journal of Business and Economics, Central Bohemia University, vol. 10(2), pages 6821:10-682, January.
  • Handle: RePEc:aad:ejbejj:v:10:y:2015:i:2:p:682
    DOI: 10.12955/ejbe.v10i2.682
    as

    Download full text from publisher

    File URL: http://ojs.journals.cz/index.php/EJBE/article/view/682/628
    Download Restriction: no

    File URL: https://libkey.io/10.12955/ejbe.v10i2.682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. V. Kass, 1980. "An Exploratory Technique for Investigating Large Quantities of Categorical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 119-127, June.
    2. David J. Hand & Heikki Mannila & Padhraic Smyth, 2001. "Principles of Data Mining," MIT Press Books, The MIT Press, edition 1, volume 1, number 026208290x, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doumpos, Michael & Zopounidis, Constantin, 2011. "Preference disaggregation and statistical learning for multicriteria decision support: A review," European Journal of Operational Research, Elsevier, vol. 209(3), pages 203-214, March.
    2. Wang, Wenjun & Liu, Dong & Liu, Xiao & Pan, Lin, 2013. "Fuzzy overlapping community detection based on local random walk and multidimensional scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6578-6586.
    3. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    4. Francesca Gerini & Tommaso Fantechi & Caterina Contini & Leonardo Casini & Gabriele Scozzafava, 2022. "Adherence to the Mediterranean Diet and COVID-19: A Segmentation Analysis of Italian and US Consumers," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    5. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    6. Junyi Zhang & Yubing Xiong, 2015. "Effects of multifaceted consumption on happiness in life: a case study in Japan based on an integrated approach," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 62(2), pages 143-162, June.
    7. Yi-Chen Chung & Hsien-Ming Chou & Chih-Neng Hung & Chihli Hung, 2021. "Using Textual and Economic Features to Predict the RMB Exchange Rate," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 11(6), pages 1-8.
    8. Kim, Ahhyoun & Kim, Hyunjoong, 2022. "A new classification tree method with interaction detection capability," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    9. Hayk Manucharyan, 2020. "How do managers actually choose suppliers? Evidence from revealed preference data," Working Papers 2020-12, Faculty of Economic Sciences, University of Warsaw.
    10. Omerašević Amela & Selimović Jasmina, 2020. "Classification Ratemaking Using Decision Tree in the Insurance Market of Bosnia and Herzegovina," South East European Journal of Economics and Business, Sciendo, vol. 15(2), pages 124-139, December.
    11. Ghosh, Atish R. & Qureshi, Mahvash S. & Kim, Jun Il & Zalduendo, Juan, 2014. "Surges," Journal of International Economics, Elsevier, vol. 92(2), pages 266-285.
      • Mahvash S Qureshi & Mr. Atish R. Ghosh & Mr. Juan Zalduendo & Mr. Jun I Kim, 2012. "Surges," IMF Working Papers 2012/022, International Monetary Fund.
    12. Malliaris, A.G. & Malliaris, Mary, 2011. "Are foreign currency markets interdependent? evidence from data mining technologies," MPRA Paper 35261, University Library of Munich, Germany.
    13. Xuedong Yan & Fan Zhang & Dan Gao & Chen Zeng & Wang Xiang & Man Zhang, 2013. "Accumulations of Heavy Metals in Roadside Soils Close to Zhaling, Eling and Nam Co Lakes in the Tibetan Plateau," IJERPH, MDPI, vol. 10(6), pages 1-17, June.
    14. Yan Zhang & Peter Trubey, 2019. "Machine Learning and Sampling Scheme: An Empirical Study of Money Laundering Detection," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 1043-1063, October.
    15. Glennon, Dennis & Kiefer, Nicholas M. & Larson, C. Erik & Choi, Hwan-sik, 2007. "Development and Validation of Credit-Scoring Models," Working Papers 07-12, Cornell University, Center for Analytic Economics.
    16. Carrizosa, Emilio & Martín-Barragán, Belén & Morales, Dolores Romero, 2011. "Detecting relevant variables and interactions in supervised classification," European Journal of Operational Research, Elsevier, vol. 213(1), pages 260-269, August.
    17. Chen-Yang Cheng, 2014. "Indoor localization algorithm using clustering on signal and coordination pattern," Annals of Operations Research, Springer, vol. 216(1), pages 83-99, May.
    18. Tomàs Aluja-Banet & Eduard Nafria, 2003. "Stability and scalability in decision trees," Computational Statistics, Springer, vol. 18(3), pages 505-520, September.
    19. Eric Grau & Yuhong Zheng & Debra Wright & Sara Skidmore & Hanzhi Zhou & Kirsten Barrett, "undated". "National Beneficiary Survey-General Waves Round 5 (Volume 1 of 3): Editing, Coding, Imputation, and Weighting Procedures," Mathematica Policy Research Reports 800a3a54e26449bb9d425293b, Mathematica Policy Research.
    20. Dursun Delen & Marilyn G. Kletke & Jin-Hwa Kim, 2005. "A Scalable Classification Algorithm for Very Large Datasets," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 4(02), pages 83-94.

    More about this item

    Keywords

    Decision makingData mining; Decision tree algorithms;

    JEL classification:

    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aad:ejbejj:v:10:y:2015:i:2:p:682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Petr Hájek (email available below). General contact details of provider: https://ojs.journals.cz/index.php/EJBE .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.