IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v13y2022i2p240.html
   My bibliography  Save this article

Numerical Analysis on Aerodynamic Performance of Counter-rotating Wind Turbine through Rear Rotor Configuration

Author

Listed:
  • Verdy A. Koehuan
  • Sugiyono .
  • Samsul Kamal

Abstract

Numerical analysis was conducted on the aerodynamic performance and the flow characteristics around the counter-rotating wind turbine or CRWT blade through rear rotor configuration using various rotor diameter ratios and distance ratios to the turbine blade through a CFD (Computational Fluid Dynamics) simulation. CFD simulation showed the normalized power coefficients of the front rotor, rear rotor, and combined rotor (CRWT) to the single rotor with a strong influence of the rear rotor configuration with the addition of tip speed ratio (TSR). A larger average normalized power coefficient takes place at D1/D2=1.0 with L/D1=0.75 by 1.221. It is about 22.1% increased to the SRWT for the given TSR range. Axial velocity contours and resultant velocity vectors around the CRWT blade with a diameter ratio of D1/D2 > 1.0 and a closer rotor distance provide a stronger bound vortex and strong separation around the rear hub blade with a tendency to increase from the hub to the tip blade at low TSR. The higher the TSR, the movement of tip vortex moves closer to the rear tip blade which has the effect of increasing the leakage flow in the area of D1/D2 < 1.0.

Suggested Citation

  • Verdy A. Koehuan & Sugiyono . & Samsul Kamal, 2019. "Numerical Analysis on Aerodynamic Performance of Counter-rotating Wind Turbine through Rear Rotor Configuration," Modern Applied Science, Canadian Center of Science and Education, vol. 13(2), pages 240-240, February.
  • Handle: RePEc:ibn:masjnl:v:13:y:2022:i:2:p:240
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/0/0/38337/38875
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/0/38337
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Seungmin & Kim, Hogeon & Son, Eunkuk & Lee, Soogab, 2012. "Effects of design parameters on aerodynamic performance of a counter-rotating wind turbine," Renewable Energy, Elsevier, vol. 42(C), pages 140-144.
    2. Krogstad, Per-Åge & Eriksen, Pål Egil, 2013. "“Blind test” calculations of the performance and wake development for a model wind turbine," Renewable Energy, Elsevier, vol. 50(C), pages 325-333.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Pacholczyk & Dariusz Karkosiński, 2020. "Parametric Study on a Performance of a Small Counter-Rotating Wind Turbine," Energies, MDPI, vol. 13(15), pages 1-17, July.
    2. Cheng, Zhi & Lien, Fue-Sang & Yee, Eugene & Meng, Hang, 2022. "A unified framework for aeroacoustics simulation of wind turbines," Renewable Energy, Elsevier, vol. 188(C), pages 299-319.
    3. Yan, Chi & Archer, Cristina L., 2018. "Assessing compressibility effects on the performance of large horizontal-axis wind turbines," Applied Energy, Elsevier, vol. 212(C), pages 33-45.
    4. Sarlak, H. & Nishino, T. & Martínez-Tossas, L.A. & Meneveau, C. & Sørensen, J.N., 2016. "Assessment of blockage effects on the wake characteristics and power of wind turbines," Renewable Energy, Elsevier, vol. 93(C), pages 340-352.
    5. Lignarolo, Lorenzo E.M. & Mehta, Dhruv & Stevens, Richard J.A.M. & Yilmaz, Ali Emre & van Kuik, Gijs & Andersen, Søren J. & Meneveau, Charles & Ferreira, Carlos J. & Ragni, Daniele & Meyers, Johan & v, 2016. "Validation of four LES and a vortex model against stereo-PIV measurements in the near wake of an actuator disc and a wind turbine," Renewable Energy, Elsevier, vol. 94(C), pages 510-523.
    6. Deskos, Georgios & Laizet, Sylvain & Piggott, Matthew D., 2019. "Turbulence-resolving simulations of wind turbine wakes," Renewable Energy, Elsevier, vol. 134(C), pages 989-1002.
    7. Luo, Kun & Zhang, Sanxia & Gao, Zhiying & Wang, Jianwen & Zhang, Liru & Yuan, Renyu & Fan, Jianren & Cen, Kefa, 2015. "Large-eddy simulation and wind-tunnel measurement of aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Renewable Energy, Elsevier, vol. 77(C), pages 351-362.
    8. Hernández-Escobedo, Q. & Saldaña-Flores, R. & Rodríguez-García, E.R. & Manzano-Agugliaro, F., 2014. "Wind energy resource in Northern Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 890-914.
    9. Asmuth, Henrik & Navarro Diaz, Gonzalo P. & Madsen, Helge Aagaard & Branlard, Emmanuel & Meyer Forsting, Alexander R. & Nilsson, Karl & Jonkman, Jason & Ivanell, Stefan, 2022. "Wind turbine response in waked inflow: A modelling benchmark against full-scale measurements," Renewable Energy, Elsevier, vol. 191(C), pages 868-887.
    10. Ramos-García, Néstor & Sørensen, Jens Nørkær & Shen, Wen Zhong, 2014. "Validation of a three-dimensional viscous–inviscid interactive solver for wind turbine rotors," Renewable Energy, Elsevier, vol. 70(C), pages 78-92.
    11. Amin Allah, Veisi & Shafiei Mayam, Mohammad Hossein, 2017. "Large Eddy Simulation of flow around a single and two in-line horizontal-axis wind turbines," Energy, Elsevier, vol. 121(C), pages 533-544.
    12. Ruiwen Zhao & Angus C. W. Creech & Alistair G. L. Borthwick & Vengatesan Venugopal & Takafumi Nishino, 2020. "Aerodynamic Analysis of a Two-Bladed Vertical-Axis Wind Turbine Using a Coupled Unsteady RANS and Actuator Line Model," Energies, MDPI, vol. 13(4), pages 1-26, February.
    13. Yang, Hua & Shen, Wenzhong & Xu, Haoran & Hong, Zedong & Liu, Chao, 2014. "Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD," Renewable Energy, Elsevier, vol. 70(C), pages 107-115.
    14. Gao, Zhiteng & Li, Ye & Wang, Tongguang & Shen, Wenzhong & Zheng, Xiaobo & Pröbsting, Stefan & Li, Deshun & Li, Rennian, 2021. "Modelling the nacelle wake of a horizontal-axis wind turbine under different yaw conditions," Renewable Energy, Elsevier, vol. 172(C), pages 263-275.
    15. He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    16. Zhao, Xu & Zhou, Ping & Liang, Xiao & Gao, Shen, 2020. "The aerodynamic coupling design and wind tunnel test of contra-rotating wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 1-8.
    17. De Cillis, Giovanni & Cherubini, Stefania & Semeraro, Onofrio & Leonardi, Stefano & De Palma, Pietro, 2022. "Stability and optimal forcing analysis of a wind turbine wake: Comparison with POD," Renewable Energy, Elsevier, vol. 181(C), pages 765-785.
    18. Radu Saulescu & Mircea Neagoe & Codruta Jaliu, 2018. "Conceptual Synthesis of Speed Increasers for Wind Turbine Conversion Systems," Energies, MDPI, vol. 11(9), pages 1-33, August.
    19. Noyes, Carlos & Loth, Eric & Martin, Dana & Johnson, Kathryn & Ananda, Gavin & Selig, Michael, 2020. "Extreme-scale load-aligning rotor: To hinge or not to hinge?," Applied Energy, Elsevier, vol. 257(C).
    20. Eriksen, Pål Egil & Krogstad, Per-Åge, 2017. "Development of coherent motion in the wake of a model wind turbine," Renewable Energy, Elsevier, vol. 108(C), pages 449-460.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:13:y:2022:i:2:p:240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.