IDEAS home Printed from https://ideas.repec.org/a/ibn/jmrjnl/v11y2019i6p70.html
   My bibliography  Save this article

Effect of Mixed Spikes on Different Types of Complex Waves

Author

Listed:
  • A.N.M. Rezaul Karim

Abstract

This article treats analytically. This paper presents a novel approach to complex waves. This article outlines the understanding of the various effects of spike representations used to make models of the predictive variable effects of the second-order portion of power while revealing the relationship between the time series segments that are recorded from a single unit. MATLAB has been used to show the effects of mixed spikes in graphs. The resulting power portion has varied representation effects in which both the random and fixed effects are expressed as functions of the frequency domain.

Suggested Citation

  • A.N.M. Rezaul Karim, 2019. "Effect of Mixed Spikes on Different Types of Complex Waves," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(6), pages 1-70, December.
  • Handle: RePEc:ibn:jmrjnl:v:11:y:2019:i:6:p:70
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/jmr/article/download/0/0/41334/42876
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/jmr/article/view/0/41334
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Wensheng & Dai, Ming & Ombao, Hernando C. & von Sachs, Rainer, 2003. "Smoothing Spline ANOVA for Time-Dependent Spectral Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 643-652, January.
    2. Wensheng Guo, 2002. "Functional Mixed Effects Models," Biometrics, The International Biometric Society, vol. 58(1), pages 121-128, March.
    3. Freyermuth, Jean-Marc & Ombao, Hernando & von Sachs, Rainer, 2010. "Tree-Structured Wavelet Estimation in a Mixed Effects Model for Spectra of Replicated Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 634-646.
    4. Freyermuth, Jean-Marc & Ombao, Hernando & von Sachs, Rainer, 2010. "Tree-structured wavelet estimation in a mixed effects model for Spectra of replicated time series," LIDAM Reprints ISBA 2010020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Fiecas & Hernando Ombao, 2016. "Modeling the Evolution of Dynamic Brain Processes During an Associative Learning Experiment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1440-1453, October.
    2. Tianbo Chen & Ying Sun & Carolina Euan & Hernando Ombao, 2021. "Clustering Brain Signals: a Robust Approach Using Functional Data Ranking," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 425-442, October.
    3. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Autin, F. & Freyermuth, Jean-Marc & von Sachs, Rainer, 2011. "Ideal denoising within a family of tree-structured wavelet estimators," LIDAM Discussion Papers ISBA 2011002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Charles Fontaine & Ron D. Frostig & Hernando Ombao, 2020. "Modeling dependence via copula of functionals of Fourier coefficients," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 1125-1144, December.
    6. John A. D. Aston & Jeng‐Min Chiou & Jonathan P. Evans, 2010. "Linguistic pitch analysis using functional principal component mixed effect models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 297-317, March.
    7. Niels Lundtorp Olsen & Bo Markussen & Lars Lau Raket, 2018. "Simultaneous inference for misaligned multivariate functional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1147-1176, November.
    8. Robert T. Krafty, 2016. "Discriminant Analysis of Time Series in the Presence of Within-Group Spectral Variability," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 435-450, July.
    9. Li, Kan & Luo, Sheng, 2019. "Bayesian functional joint models for multivariate longitudinal and time-to-event data," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 14-29.
    10. Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    11. Chau, Joris & von Sachs, Rainer, 2022. "Time-varying spectral matrix estimation via intrinsic wavelet regression for surfaces of Hermitian positive definite matrices," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    12. Rosen, Ori & Thompson, Wesley K., 2009. "A Bayesian regression model for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3773-3786, September.
    13. Reiss Philip T. & Huang Lei & Mennes Maarten, 2010. "Fast Function-on-Scalar Regression with Penalized Basis Expansions," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-30, August.
    14. Chen, Ziqi & Hu, Jianhua & Zhu, Hongtu, 2020. "Surface functional models," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    15. Matthew Reimherr & Dan Nicolae, 2016. "Estimating Variance Components in Functional Linear Models With Applications to Genetic Heritability," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 407-422, March.
    16. Ruiyan Luo & Xin Qi, 2023. "Nonlinear function‐on‐scalar regression via functional universal approximation," Biometrics, The International Biometric Society, vol. 79(4), pages 3319-3331, December.
    17. Li, Yehua & Hsing, Tailen, 2007. "On rates of convergence in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1782-1804, October.
    18. Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.
    19. Daniel Gervini & Patrick A. Carter, 2014. "Warped functional analysis of variance," Biometrics, The International Biometric Society, vol. 70(3), pages 526-535, September.
    20. Marc A. Scott & Mark S. Handcock, 2005. "Persistent Inequality? Answers From Hybrid Models for Longitudinal Data," Sociological Methods & Research, , vol. 34(1), pages 3-30, August.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jmrjnl:v:11:y:2019:i:6:p:70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.