IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v180y2020ics0047259x20302451.html
   My bibliography  Save this article

Surface functional models

Author

Listed:
  • Chen, Ziqi
  • Hu, Jianhua
  • Zhu, Hongtu

Abstract

The aim of this paper is to develop a new framework of surface functional models (SFM) for surface functional data which contains repeated observations in two domains (typically, time-location). The primary problem of interest is to investigate the relationship between a response and the two domains, where the numbers of observations in both domains within a subject may be diverging. The SFMs are far beyond the multivariate functional models with two-dimensional predictor variables. Unprecedented complexity presented in the surface functional models, such as possibly distinctive sampling designs and the dependence between the two domains, makes our models more complex than the existing ones. We provide a comprehensive investigation of the asymptotic properties of the local linear estimator of the mean function based on a general weighting scheme, including equal weight (EW), direction-to-denseness weight (DDW) and subject-to-denseness weight (SDW), as special cases. Moreover, we can mathematically categorize the surface data into nine cases according to the sampling designs (sparse, dense, and ultra-dense) of both the domains, essentially based on the relative order of the number of observations in each domain to the sample size. We derive the specific asymptotic theories and optimal bandwidth orders in each of the nine sampling design cases under all the three weighting schemes. The three weighting schemes are compared theoretically and numerically. We also examine the finite-sample performance of the estimators through simulation studies and an autism study involving white-matter fiber skeletons.

Suggested Citation

  • Chen, Ziqi & Hu, Jianhua & Zhu, Hongtu, 2020. "Surface functional models," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:jmvana:v:180:y:2020:i:c:s0047259x20302451
    DOI: 10.1016/j.jmva.2020.104664
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X20302451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2020.104664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, October.
    2. John A. Rice & Colin O. Wu, 2001. "Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves," Biometrics, The International Biometric Society, vol. 57(1), pages 253-259, March.
    3. Kehui Chen & Hans-Georg Müller, 2012. "Modeling Repeated Functional Observations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1599-1609, December.
    4. Xingyu Yan & Xiaolong Pu & Yingchun Zhou & Xiaolei Xun, 2020. "Convergence rate of principal component analysis with local-linear smoother for functional data under a unified weighing scheme," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 4(1), pages 55-65, July.
    5. Ziqi Chen & Chenlei Leng, 2016. "Dynamic Covariance Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1196-1207, July.
    6. Liebl, Dominik, 2019. "Inference for sparse and dense functional data with covariate adjustments," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 315-335.
    7. Wensheng Guo, 2002. "Functional Mixed Effects Models," Biometrics, The International Biometric Society, vol. 58(1), pages 121-128, March.
    8. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    9. Jeffrey S. Morris & Raymond J. Carroll, 2006. "Wavelet‐based functional mixed models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 179-199, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Wang & Jianhua Hu & Kim-Anh Do & Brian P. Hobbs, 2019. "An Efficient Nonparametric Estimate for Spatially Correlated Functional Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 162-183, April.
    2. Reiss Philip T. & Huang Lei & Mennes Maarten, 2010. "Fast Function-on-Scalar Regression with Penalized Basis Expansions," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-30, August.
    3. Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.
    4. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    5. Justin Petrovich & Matthew Reimherr & Carrie Daymont, 2022. "Highly irregular functional generalized linear regression with electronic health records," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 806-833, August.
    6. Li, Bin & Yu, Qingzhao, 2008. "Classification of functional data: A segmentation approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4790-4800, June.
    7. Haochang Shou & Vadim Zipunnikov & Ciprian M. Crainiceanu & Sonja Greven, 2015. "Structured functional principal component analysis," Biometrics, The International Biometric Society, vol. 71(1), pages 247-257, March.
    8. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    9. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    10. Antoniadis, Anestis & Sapatinas, Theofanis, 2007. "Estimation and inference in functional mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4793-4813, June.
    11. Mengfei Ran & Yihe Yang, 2022. "Optimal Estimation of Large Functional and Longitudinal Data by Using Functional Linear Mixed Model," Mathematics, MDPI, vol. 10(22), pages 1-28, November.
    12. Kehui Chen & Pedro Delicado & Hans-Georg Müller, 2017. "Modelling function-valued stochastic processes, with applications to fertility dynamics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 177-196, January.
    13. Zhang, Xiaoke & Zhong, Qixian & Wang, Jane-Ling, 2020. "A new approach to varying-coefficient additive models with longitudinal covariates," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    14. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    15. John A. D. Aston & Jeng‐Min Chiou & Jonathan P. Evans, 2010. "Linguistic pitch analysis using functional principal component mixed effect models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 297-317, March.
    16. Li, Kan & Luo, Sheng, 2019. "Bayesian functional joint models for multivariate longitudinal and time-to-event data," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 14-29.
    17. Matthew Reimherr & Dan Nicolae, 2016. "Estimating Variance Components in Functional Linear Models With Applications to Genetic Heritability," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 407-422, March.
    18. Shuang Wu & Hans-Georg Müller, 2011. "Response-Adaptive Regression for Longitudinal Data," Biometrics, The International Biometric Society, vol. 67(3), pages 852-860, September.
    19. Ruiyan Luo & Xin Qi, 2023. "Nonlinear function‐on‐scalar regression via functional universal approximation," Biometrics, The International Biometric Society, vol. 79(4), pages 3319-3331, December.
    20. Fu, Eric & Heckman, Nancy, 2019. "Model-based curve registration via stochastic approximation EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 159-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:180:y:2020:i:c:s0047259x20302451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.