IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v59y2010i2p297-317.html
   My bibliography  Save this article

Linguistic pitch analysis using functional principal component mixed effect models

Author

Listed:
  • John A. D. Aston
  • Jeng‐Min Chiou
  • Jonathan P. Evans

Abstract

Summary. Fundamental frequency (F0, broadly ‘pitch’) is an integral part of spoken human language; however, a comprehensive quantitative model for F0 can be a challenge to formulate owing to the large number of effects and interactions between effects that lie behind the human voice's production of F0, and the very nature of the data being a contour rather than a point. The paper presents a semiparametric functional response model for F0 by incorporating linear mixed effects models through the functional principal component scores. This model is applied to the problem of modelling F0 in the tone language Qiang, a language in which relative pitch information is part of each word's dictionary entry.

Suggested Citation

  • John A. D. Aston & Jeng‐Min Chiou & Jonathan P. Evans, 2010. "Linguistic pitch analysis using functional principal component mixed effect models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 297-317, March.
  • Handle: RePEc:bla:jorssc:v:59:y:2010:i:2:p:297-317
    DOI: 10.1111/j.1467-9876.2009.00689.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2009.00689.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2009.00689.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeng‐Min Chiou & Hans‐Georg Müller & Jane‐Ling Wang, 2003. "Functional quasi‐likelihood regression models with smooth random effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 405-423, May.
    2. Wensheng Guo, 2002. "Functional Mixed Effects Models," Biometrics, The International Biometric Society, vol. 58(1), pages 121-128, March.
    3. Jeffrey S. Morris & Raymond J. Carroll, 2006. "Wavelet‐based functional mixed models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 179-199, April.
    4. Matthew J. Gurka & Lloyd J. Edwards & Keith E. Muller & Lawrence L. Kupper, 2006. "Extending the Box–Cox transformation to the linear mixed model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 273-288, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor GINSBURGH & Shlomo WEBER, 2016. "Linguistic distances and ethnolinguistic fractionalization and disenfranchisement indices," LIDAM Reprints CORE 2855, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Dabo-Niang, S. & Guillas, S. & Ternynck, C., 2016. "Efficiency in multivariate functional nonparametric models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 168-182.
    3. Victor Ginsburgh & Shlomo Weber, 2020. "The Economics of Language," Journal of Economic Literature, American Economic Association, vol. 58(2), pages 348-404, June.
    4. Chau, Van Vinh & von Sachs, Rainer, 2016. "Functional mixed effects wavelet estimation for spectra of replicated time series," LIDAM Discussion Papers ISBA 2016013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Shiers, Nathaniel & Aston, John A.D. & Smith, Jim Q. & Coleman, John S., 2017. "Gaussian tree constraints applied to acoustic linguistic functional data," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 199-215.
    6. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    7. Lin Zhang & Veerabhadran Baladandayuthapani & Hongxiao Zhu & Keith A. Baggerly & Tadeusz Majewski & Bogdan A. Czerniak & Jeffrey S. Morris, 2016. "Functional CAR Models for Large Spatially Correlated Functional Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 772-786, April.
    8. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    2. Hongxiao Zhu & Philip J. Brown & Jeffrey S. Morris, 2012. "Robust Classification of Functional and Quantitative Image Data Using Functional Mixed Models," Biometrics, The International Biometric Society, vol. 68(4), pages 1260-1268, December.
    3. Li, Kan & Luo, Sheng, 2019. "Bayesian functional joint models for multivariate longitudinal and time-to-event data," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 14-29.
    4. Reiss Philip T. & Huang Lei & Mennes Maarten, 2010. "Fast Function-on-Scalar Regression with Penalized Basis Expansions," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-30, August.
    5. Tapabrata Maiti & Samiran Sinha & Ping-Shou Zhong, 2016. "Functional Mixed Effects Model for Small Area Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 886-903, September.
    6. Chen, Ziqi & Hu, Jianhua & Zhu, Hongtu, 2020. "Surface functional models," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    7. Matthew Reimherr & Dan Nicolae, 2016. "Estimating Variance Components in Functional Linear Models With Applications to Genetic Heritability," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 407-422, March.
    8. Ruiyan Luo & Xin Qi, 2023. "Nonlinear function‐on‐scalar regression via functional universal approximation," Biometrics, The International Biometric Society, vol. 79(4), pages 3319-3331, December.
    9. Wesley K. Thompson & Ori Rosen, 2008. "A Bayesian Model for Sparse Functional Data," Biometrics, The International Biometric Society, vol. 64(1), pages 54-63, March.
    10. Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.
    11. Daniel Gervini & Patrick A. Carter, 2014. "Warped functional analysis of variance," Biometrics, The International Biometric Society, vol. 70(3), pages 526-535, September.
    12. Yuan Wang & Jianhua Hu & Kim-Anh Do & Brian P. Hobbs, 2019. "An Efficient Nonparametric Estimate for Spatially Correlated Functional Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 162-183, April.
    13. Antoniadis, Anestis & Sapatinas, Theofanis, 2007. "Estimation and inference in functional mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4793-4813, June.
    14. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    15. Masahiro Tanaka, 2020. "Bayesian Inference of Local Projections with Roughness Penalty Priors," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 629-651, February.
    16. Chau, Van Vinh & von Sachs, Rainer, 2016. "Functional mixed effects wavelet estimation for spectra of replicated time series," LIDAM Discussion Papers ISBA 2016013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Jeffrey S. Morris & Philip J. Brown & Richard C. Herrick & Keith A. Baggerly & Kevin R. Coombes, 2008. "Bayesian Analysis of Mass Spectrometry Proteomic Data Using Wavelet-Based Functional Mixed Models," Biometrics, The International Biometric Society, vol. 64(2), pages 479-489, June.
    18. Christian Ritz & Jens C. Streibig, 2009. "Functional Regression Analysis of Fluorescence Curves," Biometrics, The International Biometric Society, vol. 65(2), pages 609-617, June.
    19. Lin Zhang & Veerabhadran Baladandayuthapani & Hongxiao Zhu & Keith A. Baggerly & Tadeusz Majewski & Bogdan A. Czerniak & Jeffrey S. Morris, 2016. "Functional CAR Models for Large Spatially Correlated Functional Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 772-786, April.
    20. Jiang, Jiakun & Lin, Huazhen & Zhong, Qingzhi & Li, Yi, 2022. "Analysis of multivariate non-gaussian functional data: A semiparametric latent process approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:59:y:2010:i:2:p:297-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.