IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i11p3773-3786.html
   My bibliography  Save this article

A Bayesian regression model for multivariate functional data

Author

Listed:
  • Rosen, Ori
  • Thompson, Wesley K.

Abstract

In this paper we present a model for the analysis of multivariate functional data with unequally spaced observation times that may differ among subjects. Our method is formulated as a Bayesian mixed-effects model in which the fixed part corresponds to the mean functions, and the random part corresponds to individual deviations from these mean functions. Covariates can be incorporated into both the fixed and the random effects. The random error term of the model is assumed to follow a multivariate Ornstein-Uhlenbeck process. For each of the response variables, both the mean and the subject-specific deviations are estimated via low-rank cubic splines using radial basis functions. Inference is performed via Markov chain Monte Carlo methods.

Suggested Citation

  • Rosen, Ori & Thompson, Wesley K., 2009. "A Bayesian regression model for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3773-3786, September.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:11:p:3773-3786
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00135-2
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ori Rosen & David S. Stoffer, 2007. "Automatic estimation of multivariate spectra via smoothing splines," Biometrika, Biometrika Trust, vol. 94(2), pages 335-345.
    2. P. G. Blackwell, 2003. "Bayesian inference for Markov processes with diffusion and discrete components," Biometrika, Biometrika Trust, vol. 90(3), pages 613-627, September.
    3. Smith, Michael & Kohn, Robert, 2000. "Nonparametric seemingly unrelated regression," Journal of Econometrics, Elsevier, vol. 98(2), pages 257-281, October.
    4. Wensheng Guo, 2002. "Functional Mixed Effects Models," Biometrics, The International Biometric Society, vol. 58(1), pages 121-128, March.
    5. Smith M. & Kohn R., 2002. "Parsimonious Covariance Matrix Estimation for Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1141-1153, December.
    6. Veerabhadran Baladandayuthapani & Bani K. Mallick & Mee Young Hong & Joanne R. Lupton & Nancy D. Turner & Raymond J. Carroll, 2008. "Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis," Biometrics, The International Biometric Society, vol. 64(1), pages 64-73, March.
    7. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, September.
    8. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
    9. Wesley K. Thompson & Ori Rosen, 2008. "A Bayesian Model for Sparse Functional Data," Biometrics, The International Biometric Society, vol. 64(1), pages 54-63, March.
    10. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, September.
    11. M. Kessler & A. Rahbek, 2004. "Identification and Inference for Multivariate Cointegrated and Ergodic Gaussian Diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 7(2), pages 137-151, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trung Dung Tran & Emmanuel Lesaffre & Geert Verbeke & Joke Duyck, 2021. "Latent Ornstein‐Uhlenbeck models for Bayesian analysis of multivariate longitudinal categorical responses," Biometrics, The International Biometric Society, vol. 77(2), pages 689-701, June.
    2. Martínez-Camblor, Pablo & Corral, Norberto, 2011. "Repeated measures analysis for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3244-3256, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Kan & Luo, Sheng, 2019. "Bayesian functional joint models for multivariate longitudinal and time-to-event data," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 14-29.
    2. Li, Yehua & Hsing, Tailen, 2007. "On rates of convergence in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1782-1804, October.
    3. Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.
    4. Kruse, René-Marcel & Silbersdorff, Alexander & Säfken, Benjamin, 2022. "Model averaging for linear mixed models via augmented Lagrangian," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    5. Lin Zhang & Veerabhadran Baladandayuthapani & Hongxiao Zhu & Keith A. Baggerly & Tadeusz Majewski & Bogdan A. Czerniak & Jeffrey S. Morris, 2016. "Functional CAR Models for Large Spatially Correlated Functional Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 772-786, April.
    6. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    7. Ghosal, Rahul & Maity, Arnab, 2022. "A Score Based Test for Functional Linear Concurrent Regression," Econometrics and Statistics, Elsevier, vol. 21(C), pages 114-130.
    8. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    9. Veerabhadran Baladandayuthapani & Bani K. Mallick & Mee Young Hong & Joanne R. Lupton & Nancy D. Turner & Raymond J. Carroll, 2008. "Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis," Biometrics, The International Biometric Society, vol. 64(1), pages 64-73, March.
    10. Park, Jun Young & Polzehl, Joerg & Chatterjee, Snigdhansu & Brechmann, André & Fiecas, Mark, 2020. "Semiparametric modeling of time-varying activation and connectivity in task-based fMRI data," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    11. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    12. Mestekemper, Thomas & Windmann, Michael & Kauermann, Göran, 2010. "Functional hourly forecasting of water temperature," International Journal of Forecasting, Elsevier, vol. 26(4), pages 684-699, October.
    13. Naschold, Felix, 2012. "“The Poor Stay Poor”: Household Asset Poverty Traps in Rural Semi-Arid India," World Development, Elsevier, vol. 40(10), pages 2033-2043.
    14. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    15. Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    16. Welham, S.J. & Thompson, R., 2009. "A note on bimodality in the log-likelihood function for penalized spline mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 920-931, February.
    17. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    18. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    19. Kuhlenkasper, Torben & Kauermann, Göran, 2010. "Female wage profiles: An additive mixed model approach to employment breaks due to childcare," HWWI Research Papers 2-18, Hamburg Institute of International Economics (HWWI).
    20. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:11:p:3773-3786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.