IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i4p3319-3331.html
   My bibliography  Save this article

Nonlinear function‐on‐scalar regression via functional universal approximation

Author

Listed:
  • Ruiyan Luo
  • Xin Qi

Abstract

We consider general nonlinear function‐on‐scalar (FOS) regression models, where the functional response depends on multiple scalar predictors in a general unknown nonlinear form. Existing methods either assume specific model forms (e.g., additive models) or directly estimate the nonlinear function in a space with dimension equal to the number of scalar predictors, which can only be applied to models with a few scalar predictors. To overcome these shortcomings, motivated by the classic universal approximation theorem used in neural networks, we develop a functional universal approximation theorem which can be used to approximate general nonlinear FOS maps and can be easily adopted into the framework of functional data analysis. With this theorem and utilizing smoothness regularity, we develop a novel method to fit the general nonlinear FOS regression model and make predictions. Our new method does not make any specific assumption on the model forms, and it avoids the direct estimation of nonlinear functions in a space with dimension equal to the number of scalar predictors. By estimating a sequence of bivariate functions, our method can be applied to models with a relatively large number of scalar predictors. The good performance of the proposed method is demonstrated by empirical studies on various simulated and real datasets.

Suggested Citation

  • Ruiyan Luo & Xin Qi, 2023. "Nonlinear function‐on‐scalar regression via functional universal approximation," Biometrics, The International Biometric Society, vol. 79(4), pages 3319-3331, December.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3319-3331
    DOI: 10.1111/biom.13838
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13838
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reiss Philip T. & Huang Lei & Mennes Maarten, 2010. "Fast Function-on-Scalar Regression with Penalized Basis Expansions," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-30, August.
    2. Jialiang Li & Chao Huang & Zhub Hongtu, 2017. "A Functional Varying-Coefficient Single-Index Model for Functional Response Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1169-1181, July.
    3. Xinchao Luo & Lixing Zhu & Hongtu Zhu, 2016. "Single‐index varying coefficient model for functional responses," Biometrics, The International Biometric Society, vol. 72(4), pages 1275-1284, December.
    4. Wensheng Guo, 2002. "Functional Mixed Effects Models," Biometrics, The International Biometric Society, vol. 58(1), pages 121-128, March.
    5. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    6. Jeffrey S. Morris & Raymond J. Carroll, 2006. "Wavelet‐based functional mixed models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 179-199, April.
    7. X. Lin & D. Zhang, 1999. "Inference in generalized additive mixed modelsby using smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 381-400, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaoke & Zhong, Qixian & Wang, Jane-Ling, 2020. "A new approach to varying-coefficient additive models with longitudinal covariates," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    2. Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.
    3. Daniel Gervini & Patrick A. Carter, 2014. "Warped functional analysis of variance," Biometrics, The International Biometric Society, vol. 70(3), pages 526-535, September.
    4. Xiong Cai & Liugen Xue & Xiaolong Pu & Xingyu Yan, 2021. "Efficient Estimation for Varying-Coefficient Mixed Effects Models with Functional Response Data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(4), pages 467-495, May.
    5. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    6. John A. D. Aston & Jeng‐Min Chiou & Jonathan P. Evans, 2010. "Linguistic pitch analysis using functional principal component mixed effect models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 297-317, March.
    7. Hongxiao Zhu & Philip J. Brown & Jeffrey S. Morris, 2012. "Robust Classification of Functional and Quantitative Image Data Using Functional Mixed Models," Biometrics, The International Biometric Society, vol. 68(4), pages 1260-1268, December.
    8. Li, Kan & Luo, Sheng, 2019. "Bayesian functional joint models for multivariate longitudinal and time-to-event data," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 14-29.
    9. Ali M. Mosammam & Jorge Mateu, 2018. "A penalized likelihood method for nonseparable space–time generalized additive models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 333-357, July.
    10. Reiss Philip T. & Huang Lei & Mennes Maarten, 2010. "Fast Function-on-Scalar Regression with Penalized Basis Expansions," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-30, August.
    11. Tapabrata Maiti & Samiran Sinha & Ping-Shou Zhong, 2016. "Functional Mixed Effects Model for Small Area Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 886-903, September.
    12. Yiqiang Lu & Riquan Zhang, 2009. "Smoothing spline estimation of generalised varying-coefficient mixed model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 815-825.
    13. Chen, Ziqi & Hu, Jianhua & Zhu, Hongtu, 2020. "Surface functional models," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    14. Matthew Reimherr & Dan Nicolae, 2016. "Estimating Variance Components in Functional Linear Models With Applications to Genetic Heritability," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 407-422, March.
    15. Minhee Kim & Todd Allen & Kaibo Liu, 2023. "Covariate Dependent Sparse Functional Data Analysis," INFORMS Joural on Data Science, INFORMS, vol. 2(1), pages 81-98, April.
    16. Wesley K. Thompson & Ori Rosen, 2008. "A Bayesian Model for Sparse Functional Data," Biometrics, The International Biometric Society, vol. 64(1), pages 54-63, March.
    17. Moiseev, Nikita & Volodin, Andrei, 2019. "Increasing the accuracy of macroeconomic time series forecast by incorporating functional and correlational dependencies between them," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 53, pages 119-137.
    18. Yuan Wang & Jianhua Hu & Kim-Anh Do & Brian P. Hobbs, 2019. "An Efficient Nonparametric Estimate for Spatially Correlated Functional Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 162-183, April.
    19. Robert T. Krafty & Phyllis A. Gimotty & David Holtz & George Coukos & Wensheng Guo, 2008. "Varying Coefficient Model with Unknown Within-Subject Covariance for Analysis of Tumor Growth Curves," Biometrics, The International Biometric Society, vol. 64(4), pages 1023-1031, December.
    20. Antoniadis, Anestis & Sapatinas, Theofanis, 2007. "Estimation and inference in functional mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4793-4813, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3319-3331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.