IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v641y2024ics0378437124002346.html
   My bibliography  Save this article

Correlation between Hurst exponent and largest Lyapunov exponent on a coupled map lattice

Author

Listed:
  • McAllister, A.
  • McCartney, M.
  • Glass, D.H.

Abstract

Positive correlations have been made between the Hurst exponent and the largest Lyapunov exponent using various one-dimensional maps by other authors. We incorporate these maps into a Coupled Map Lattice (CML), and investigate whether the correlation still exists. With multiple Hurst exponents being calculated for each CML, differences between each have been shown, with the possibility of using one Hurst exponent to represent the system. Results also show that the Hurst exponent is a good indicator of chaos, and is in positive correlation with the largest Lyapunov exponent. We suggest that for a general class of CML, an increased Hurst exponent indicates an increased Lyapunov exponent 85% of the time. Given the Hurst exponent can frequently be calculated more quickly than the Lyapunov exponent we suggest it as a more time efficient measure. Through these connections, machine learning methods have been used to predict the largest Lyapunov exponent for different scenarios.

Suggested Citation

  • McAllister, A. & McCartney, M. & Glass, D.H., 2024. "Correlation between Hurst exponent and largest Lyapunov exponent on a coupled map lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
  • Handle: RePEc:eee:phsmap:v:641:y:2024:i:c:s0378437124002346
    DOI: 10.1016/j.physa.2024.129725
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124002346
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grech, D & Mazur, Z, 2004. "Can one make any crash prediction in finance using the local Hurst exponent idea?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 133-145.
    2. Tousheng Huang & Huayong Zhang & Xuebing Cong & Ge Pan & Xiumin Zhang & Zhao Liu, 2019. "Exploring Spatiotemporal Complexity of a Predator-Prey System with Migration and Diffusion by a Three-Chain Coupled Map Lattice," Complexity, Hindawi, vol. 2019, pages 1-19, May.
    3. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    4. Tarnopolski, Mariusz, 2018. "Correlation between the Hurst exponent and the maximal Lyapunov exponent: Examining some low-dimensional conservative maps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 834-844.
    5. Lotfalinezhad, Hamze & Maleki, Ali, 2020. "TTA, a new approach to estimate Hurst exponent with less estimation error and computational time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    6. Volos, Ch. K. & Kyprianidis, I.M. & Stouboulos, I.N. & Vaidyanathan, S. & Pham, V.-T., 2016. "Analysis, adaptive control and circuit simulation of a novel nonlinear finance systemAuthor-Name: Tacha, O.I," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 200-217.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    2. Ladislav Krištoufek, 2010. "Dlouhá paměť a její vývoj ve výnosech burzovního indexu PX v letech 1997-2009 [Long-Term Memory and Its Evolution in Returns of Stock Index PX Between 1997 and 2009]," Politická ekonomie, Prague University of Economics and Business, vol. 2010(4), pages 471-487.
    3. Asif, Raheel & Frömmel, Michael, 2022. "Testing Long memory in exchange rates and its implications for the adaptive market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    4. John Barkoulas & Christopher Baum & Mustafa Caglayan, 1999. "Fractional monetary dynamics," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1393-1400.
    5. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    6. Michelacci, Claudio & Zaffaroni, Paolo, 2000. "(Fractional) beta convergence," Journal of Monetary Economics, Elsevier, vol. 45(1), pages 129-153, February.
    7. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
    8. SangKun Bae & Mark J. Jensen, 1998. "Long-Run Neutrality in a Long-Memory Model," Macroeconomics 9809006, University Library of Munich, Germany, revised 21 Apr 1999.
    9. Jinquan Liu & Tingguo Zheng & Jianli Sui, 2008. "Dual long memory of inflation and test of the relationship between inflation and inflation uncertainty," Psychometrika, Springer;The Psychometric Society, vol. 3(2), pages 240-254, June.
    10. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
    11. Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.
    12. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    13. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    14. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2005. "Testing for Long Memory and Nonlinear Time Series: A Demand for Money Study," Trinity Economics Papers tep20021, Trinity College Dublin, Department of Economics.
    15. Tan, Zhengxun & Liu, Juan & Chen, Juanjuan, 2021. "Detecting stock market turning points using wavelet leaders method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    16. Ruan, Qingsong & Bao, Junjie & Zhang, Manqian & Fan, Limin, 2019. "The effects of exchange rate regime reform on RMB markets: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 122-134.
    17. Barkoulas, John T. & Baum, Christopher F., 1996. "Long-term dependence in stock returns," Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
    18. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    19. Gil-Alana, L.A., 2006. "Fractional integration in daily stock market indexes," Review of Financial Economics, Elsevier, vol. 15(1), pages 28-48.
    20. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," CESifo Working Paper Series 6396, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:641:y:2024:i:c:s0378437124002346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.