IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i14p2410-d859572.html
   My bibliography  Save this article

Behavior Analysis of a Class of Discrete-Time Dynamical System with Capture Rate

Author

Listed:
  • Xiongxiong Du

    (Department of Mathematics, Northwest Normal University, Lanzhou 730070, China
    Department of Mathematics, Wenzhou University, Wenzhou 325035, China)

  • Xiaoling Han

    (Department of Mathematics, Northwest Normal University, Lanzhou 730070, China)

  • Ceyu Lei

    (Department of Mathematics, Northwest Normal University, Lanzhou 730070, China)

Abstract

In this paper, we study the stability and bifurcation analysis of a class of discrete-time dynamical system with capture rate. The local stability of the system at equilibrium points are discussed. By using the center manifold theorem and bifurcation theory, the conditions for the existence of flip bifurcation and Hopf bifurcation in the interior of R + 2 are proved. The numerical simulations show that the capture rate not only affects the size of the equilibrium points, but also changes the bifurcation phenomenon. It was found that the discrete system not only has flip bifurcation and Hopf bifurcation, but also has chaotic orbital sets. The complexity of dynamic behavior is verified by numerical analysis of bifurcation, phase and maximum Lyapunov exponent diagram.

Suggested Citation

  • Xiongxiong Du & Xiaoling Han & Ceyu Lei, 2022. "Behavior Analysis of a Class of Discrete-Time Dynamical System with Capture Rate," Mathematics, MDPI, vol. 10(14), pages 1-15, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2410-:d:859572
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/14/2410/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/14/2410/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. López-Ruiz, Ricardo & Fournier-Prunaret, Danièle, 2005. "Indirect Allee effect, bistability and chaotic oscillations in a predator–prey discrete model of logistic type," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 85-101.
    2. Sun, Gui-Quan & Jin, Zhen & Liu, Quan-Xing & Li, Li, 2008. "Dynamical complexity of a spatial predator–prey model with migration," Ecological Modelling, Elsevier, vol. 219(1), pages 248-255.
    3. Liu, Xiaoli & Xiao, Dongmei, 2007. "Complex dynamic behaviors of a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 80-94.
    4. Dhar, Joydip & Singh, Harkaran & Bhatti, Harbax Singh, 2015. "Discrete-time dynamics of a system with crowding effect and predator partially dependent on prey," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 324-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arjun Hasibuan & Asep Kuswandi Supriatna & Endang Rusyaman & Md. Haider Ali Biswas, 2023. "Harvested Predator–Prey Models Considering Marine Reserve Areas: Systematic Literature Review," Sustainability, MDPI, vol. 15(16), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binhao Hong & Chunrui Zhang, 2023. "Neimark–Sacker Bifurcation of a Discrete-Time Predator–Prey Model with Prey Refuge Effect," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    2. Marius-F. Danca & Michal Fečkan & Nikolay Kuznetsov & Guanrong Chen, 2021. "Coupled Discrete Fractional-Order Logistic Maps," Mathematics, MDPI, vol. 9(18), pages 1-14, September.
    3. Zhong, Shihong & Xia, Juandi & Liu, Biao, 2021. "Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Mohammed O. Al-Kaff & Ghada AlNemer & Hamdy A. El-Metwally & Abd-Elalim A. Elsadany & Elmetwally M. Elabbasy, 2024. "Dynamic Behavior and Bifurcation Analysis of a Modified Reduced Lorenz Model," Mathematics, MDPI, vol. 12(9), pages 1-20, April.
    5. Akhtar, S. & Ahmed, R. & Batool, M. & Shah, Nehad Ali & Chung, Jae Dong, 2021. "Stability, bifurcation and chaos control of a discretized Leslie prey-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Çelik, Canan & Duman, Oktay, 2009. "Allee effect in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1956-1962.
    7. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    8. Ali Yousef & Fatma Bozkurt Yousef, 2019. "Bifurcation and Stability Analysis of a System of Fractional-Order Differential Equations for a Plant–Herbivore Model with Allee Effect," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
    9. Rajni, & Ghosh, Bapan, 2022. "Multistability, chaos and mean population density in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. López-Ruiz, Ricardo & Fournier-Prunaret, Danièle, 2009. "Periodic and chaotic events in a discrete model of logistic type for the competitive interaction of two species," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 334-347.
    11. Zhang, Limin & Zhao, Min, 2009. "Dynamic complexities in a hyperparasitic system with prolonged diapause for host," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1136-1142.
    12. Yousef, A.M. & Rida, S.Z. & Ali, H.M. & Zaki, A.S., 2023. "Stability, co-dimension two bifurcations and chaos control of a host-parasitoid model with mutual interference," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    13. Xiaorong Ma & Qamar Din & Muhammad Rafaqat & Nasir Javaid & Yongliang Feng, 2020. "A Density-Dependent Host-Parasitoid Model with Stability, Bifurcation and Chaos Control," Mathematics, MDPI, vol. 8(4), pages 1-26, April.
    14. Zhang, Limin & Zhang, Chaofeng & He, Zhirong, 2019. "Codimension-one and codimension-two bifurcations of a discrete predator–prey system with strong Allee effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 155-178.
    15. Bozkurt, Fatma & Yousef, Ali & Baleanu, Dumitru & Alzabut, Jehad, 2020. "A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    16. Zeyan Wu & Wenxiong Lin & Bailian Li & Linkun Wu & Changxun Fang & Zhixing Zhang, 2015. "Terminal Restriction Fragment Length Polymorphism Analysis of Soil Bacterial Communities under Different Vegetation Types in Subtropical Area," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-10, June.
    17. Liu, Xiaoli & Xiao, Dongmei, 2007. "Complex dynamic behaviors of a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 80-94.
    18. Zhu, Lili & Zhao, Min, 2009. "Dynamic complexity of a host–parasitoid ecological model with the Hassell growth function for the host," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1259-1269.
    19. Xibo Wang & Jianping Ge & Wendong Wei & Hanshi Li & Chen Wu & Ge Zhu, 2016. "Spatial Dynamics of the Communities and the Role of Major Countries in the International Rare Earths Trade: A Complex Network Analysis," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-22, May.
    20. Wang, Caiyun, 2015. "Rich dynamics of a predator–prey model with spatial motion," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 1-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2410-:d:859572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.