IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i2p250-d89975.html
   My bibliography  Save this article

Residential Heat Supply by Waste-Heat Re-Use: Sources, Supply Potential and Demand Coverage—A Case Study

Author

Listed:
  • Wolfgang Loibl

    (Center of Energy, Austrian Institute of Technology, 1220 Vienna, Austria)

  • Romana Stollnberger

    (Center of Energy, Austrian Institute of Technology, 1220 Vienna, Austria)

  • Doris Österreicher

    (Institute for Structural Engineering, University of Natural Resources and Life Sciences Vienna, 1180 Wien, Austria)

Abstract

This paper deals with climate change mitigation and addresses waste heat reuse as a measure which is until now considered only to a limited extent. The City of Vienna serves as a case study to explore potentials to improve the urban heat supply using waste heat as an additional energy source. As no observation data about waste heat and detailed heating demand is available, this data is derived from proxy data for estimating waste heat reuse potential and residential heating demand patterns. Heat requirements for manufacturing and service provision is explored and, based on the distribution of the companies within the city, mapped as waste heat sources. Employees per company serves as proxy data to allocate the heat volume. Waste heat share and temperature ranges is reviewed from literature. Heating demand is mapped based on floor space of the buildings by age class and building type. Merging supply and demand maps allows to quantify the residential heating demand coverage through local waste heat in the potential supply areas within different distance ranges and housing density classes. In high density housing areas, only a small share of the demand can be covered by waste heat supply even within 250 m distance from sources due to few companies which could provide waste heat. In medium to low density housing areas in Vienna’s outer districts with more industry, a higher share of residential heating demand near the sources can be covered by waste heat within a 250 m distance. Within a 500 m distance, around half of the residential heating demand can be covered only in low density housing areas near the waste heat sources.

Suggested Citation

  • Wolfgang Loibl & Romana Stollnberger & Doris Österreicher, 2017. "Residential Heat Supply by Waste-Heat Re-Use: Sources, Supply Potential and Demand Coverage—A Case Study," Sustainability, MDPI, vol. 9(2), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:2:p:250-:d:89975
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/2/250/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/2/250/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rode, Philipp & Keim, Christian & Robazza, Guido & Viejo, Pablo & Schofield, James, 2014. "Cities and energy: urban morphology and residential heat-energy demand," LSE Research Online Documents on Economics 60778, London School of Economics and Political Science, LSE Library.
    2. Philipp Rode & Christian Keim & Guido Robazza & Pablo Viejo & James Schofield, 2014. "Cities and Energy: Urban Morphology and Residential Heat-Energy Demand," Environment and Planning B, , vol. 41(1), pages 138-162, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shabnam Homaei & Mohamed Hamdy, 2021. "Quantification of Energy Flexibility and Survivability of All-Electric Buildings with Cost-Effective Battery Size: Methodology and Indexes," Energies, MDPI, vol. 14(10), pages 1-32, May.
    2. Wang, Honglin & Ma, Chunyan & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Improving high-pressure water scrubbing through process integration and solvent selection for biogas upgrading," Applied Energy, Elsevier, vol. 276(C).
    3. Thomas Märzinger & Doris Österreicher, 2020. "Extending the Application of the Smart Readiness Indicator—A Methodology for the Quantitative Assessment of the Load Shifting Potential of Smart Districts," Energies, MDPI, vol. 13(13), pages 1-24, July.
    4. Moreno, Diana & Nielsen, Steffen & Sorknæs, Peter & Lund, Henrik & Thellufsen, Jakob Zinck & Mathiesen, Brian Vad, 2024. "Exploring the location and use of baseload district heating supply. What can current heat sources tell us about future opportunities?," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ji & Xu, Le & Shabunko, Veronika & Tay, Stephen En Rong & Sun, Huixuan & Lau, Stephen Siu Yu & Reindl, Thomas, 2019. "Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city," Applied Energy, Elsevier, vol. 240(C), pages 513-533.
    2. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    3. Mohajeri, Nahid & Perera, A.T.D. & Coccolo, Silvia & Mosca, Lucas & Le Guen, Morgane & Scartezzini, Jean-Louis, 2019. "Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss village to 2050," Renewable Energy, Elsevier, vol. 143(C), pages 810-826.
    4. Rafiee, A. & Dias, E. & Koomen, E., 2019. "Analysing the impact of spatial context on the heat consumption of individual households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 461-470.
    5. Milena Vuckovic & Kristina Kiesel & Ardeshir Mahdavi, 2017. "The Extent and Implications of the Microclimatic Conditions in the Urban Environment: A Vienna Case Study," Sustainability, MDPI, vol. 9(2), pages 1-16, January.
    6. Dimitra Tsirigoti & Katerina Tsikaloudaki, 2018. "The Effect of Climate Conditions on the Relation between Energy Efficiency and Urban Form," Energies, MDPI, vol. 11(3), pages 1-29, March.
    7. Natanian, Jonathan & Aleksandrowicz, Or & Auer, Thomas, 2019. "A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts," Applied Energy, Elsevier, vol. 254(C).
    8. Weinand, J.M. & McKenna, R. & Fichtner, W., 2019. "Developing a municipality typology for modelling decentralised energy systems," Utilities Policy, Elsevier, vol. 57(C), pages 75-96.
    9. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    10. Teresa Santos & Raquel Deus & Jorge Rocha & José António Tenedório, 2021. "Assessing Sustainable Urban Development Trends in a Dynamic Tourist Coastal Area Using 3D Spatial Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    11. He, Xiaoping, 2022. "Energy effect of urban diversity: An empirical study from a land-use perspective," Energy Economics, Elsevier, vol. 108(C).
    12. Allen-Dumas, Melissa R. & Rose, Amy N. & New, Joshua R. & Omitaomu, Olufemi A. & Yuan, Jiangye & Branstetter, Marcia L. & Sylvester, Linda M. & Seals, Matthew B. & Carvalhaes, Thomaz M. & Adams, Mark , 2020. "Impacts of the morphology of new neighborhoods on microclimate and building energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Simone Giostra & Gabriele Masera & Rafaella Monteiro, 2022. "Solar Typologies: A Comparative Analysis of Urban Form and Solar Potential," Sustainability, MDPI, vol. 14(15), pages 1-31, July.
    14. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    15. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    16. Philipp Rode & Alexandra Gomes & Muhammad Adeel & Fizzah Sajjad & Andreas Koch & Syed Monjur Murshed, 2020. "Between Abundance and Constraints: The Natural Resource Equation of Asia’s Diverging, Higher-Income City Models," Land, MDPI, vol. 9(11), pages 1-33, October.
    17. Rosenfelder, Markus & Wussow, Moritz & Gust, Gunther & Cremades, Roger & Neumann, Dirk, 2021. "Predicting residential electricity consumption using aerial and street view images," Applied Energy, Elsevier, vol. 301(C).
    18. Efrat Eizenberg & Orly Sasson & Mor Shilon, 2019. "Urban Morphology and Qualitative Topology: Open Green Spaces in High-Rise Residential Developments," Urban Planning, Cogitatio Press, vol. 4(4), pages 73-85.
    19. Yasser Ibrahim & Tristan Kershaw & Paul Shepherd & David Coley, 2021. "On the Optimisation of Urban form Design, Energy Consumption and Outdoor Thermal Comfort Using a Parametric Workflow in a Hot Arid Zone," Energies, MDPI, vol. 14(13), pages 1-22, July.
    20. Miguel Amado & Francesca Poggi & António Ribeiro Amado & Sílvia Breu, 2017. "A Cellular Approach to Net-Zero Energy Cities," Energies, MDPI, vol. 10(11), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:2:p:250-:d:89975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.