IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9023-d869622.html
   My bibliography  Save this article

Solar Typologies: A Comparative Analysis of Urban Form and Solar Potential

Author

Listed:
  • Simone Giostra

    (Politecnico di Milano, Department of Architecture and Urban Studies, Via Bonardi 3, 20133 Milan, Italy)

  • Gabriele Masera

    (Politecnico di Milano, Department of Architecture, Built Environment and Construction Engineering, Via Ponzio 31, 20133 Milan, Italy)

  • Rafaella Monteiro

    (Politecnico di Milano, Department of Architecture, Built Environment and Construction Engineering, Via Ponzio 31, 20133 Milan, Italy)

Abstract

Efficient use of energy in the construction sector is a pillar of the European Union’s 2050 climate protection goals, yet legislation makes no explicit reference to urban morphology or building form, which are recognized as key to energy performance in buildings. Rapidly changing energy standards and new requirements for on-site energy production demand a vigorous scrutiny of established urban typologies that are largely the product of an older energy regime. The research explores a set of 312 building shapes with floor-to-area ratio (FAR) of 3 within a given plot to identify emerging trends, ranges, and correlations between geometric variables, visual comfort, and energy indicators. Cases are grouped and evaluated in relation to three main urban typologies to highlight unique features related to each typology. The paper also compares two groups of results related to passive and active solar potential, respectively, to identify formal traits that are specific to each of these two design strategies. Finally, the research ranks design options based on total energy use taking into account the energy need for artificial lighting as well as contributions from both passive energy savings and active energy production. Results show that energy demand across cases varies by a factor 2 for passive strategies and a factor 5 when active potential is considered based on shape alone. Best results are clearly positioned at the two extremes of the geometric and proportional range. On the one hand, low-rise compact bar and courtyard buildings that are perhaps most prevalent in our cities today may be effectively retrofitted to meet active energy targets. On the other hand, extremely tall and slim towers appear to be the only typology in the study with the potential to achieve zero-energy status by virtue of their form alone. The work sheds light on the formal implications of EU energy mandates and offers a glimpse of how buildings may adapt to the combined selective pressures of high on-site energy fraction and low energy use to shape our future cities.

Suggested Citation

  • Simone Giostra & Gabriele Masera & Rafaella Monteiro, 2022. "Solar Typologies: A Comparative Analysis of Urban Form and Solar Potential," Sustainability, MDPI, vol. 14(15), pages 1-31, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9023-:d:869622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9023/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9023/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Ji & Xu, Le & Shabunko, Veronika & Tay, Stephen En Rong & Sun, Huixuan & Lau, Stephen Siu Yu & Reindl, Thomas, 2019. "Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city," Applied Energy, Elsevier, vol. 240(C), pages 513-533.
    2. Blumberga, Andra & Vanaga, Ruta & Freimanis, Ritvars & Blumberga, Dagnija & Antužs, Juris & Krastiņš, Artūrs & Jankovskis, Ivars & Bondars, Edgars & Treija, Sandra, 2020. "Transition from traditional historic urban block to positive energy block," Energy, Elsevier, vol. 202(C).
    3. Savvides, Andreas & Vassiliades, Constantinos & Michael, Aimilios & Kalogirou, Soteris, 2019. "Siting and building-massing considerations for the urban integration of active solar energy systems," Renewable Energy, Elsevier, vol. 135(C), pages 963-974.
    4. Rode, Philipp & Keim, Christian & Robazza, Guido & Viejo, Pablo & Schofield, James, 2014. "Cities and energy: urban morphology and residential heat-energy demand," LSE Research Online Documents on Economics 60778, London School of Economics and Political Science, LSE Library.
    5. Mohajeri, Nahid & Upadhyay, Govinda & Gudmundsson, Agust & Assouline, Dan & Kämpf, Jérôme & Scartezzini, Jean-Louis, 2016. "Effects of urban compactness on solar energy potential," Renewable Energy, Elsevier, vol. 93(C), pages 469-482.
    6. Natanian, Jonathan & Aleksandrowicz, Or & Auer, Thomas, 2019. "A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Bonenberg & Wojciech Skórzewski & Ling Qi & Yuhong Han & Wojciech Czekała & Mo Zhou, 2023. "An Energy-Saving-Oriented Approach to Urban Design—Application in the Local Conditions of Poznań Metropolitan Area (Poland)," Sustainability, MDPI, vol. 15(14), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natanian, Jonathan & Aleksandrowicz, Or & Auer, Thomas, 2019. "A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts," Applied Energy, Elsevier, vol. 254(C).
    2. Shi, Zhongming & Fonseca, Jimeno A. & Schlueter, Arno, 2021. "A parametric method using vernacular urban block typologies for investigating interactions between solar energy use and urban design," Renewable Energy, Elsevier, vol. 165(P1), pages 823-841.
    3. Yasser Ibrahim & Tristan Kershaw & Paul Shepherd & David Coley, 2021. "On the Optimisation of Urban form Design, Energy Consumption and Outdoor Thermal Comfort Using a Parametric Workflow in a Hot Arid Zone," Energies, MDPI, vol. 14(13), pages 1-22, July.
    4. Hasan, Javeriya & Horvat, Miljana, 2023. "Spatial parameters and methodological approaches in solar potential assessment - State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    6. Zhang, Ji & Xu, Le & Shabunko, Veronika & Tay, Stephen En Rong & Sun, Huixuan & Lau, Stephen Siu Yu & Reindl, Thomas, 2019. "Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city," Applied Energy, Elsevier, vol. 240(C), pages 513-533.
    7. Teresa Santos & Raquel Deus & Jorge Rocha & José António Tenedório, 2021. "Assessing Sustainable Urban Development Trends in a Dynamic Tourist Coastal Area Using 3D Spatial Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    8. Younghun Choi & Takuro Kobashi & Yoshiki Yamagata & Akito Murayama, 2021. "Assessment of waterfront office redevelopment plan on optimal building energy demand and rooftop photovoltaics for urban decarbonization," Papers 2108.09029, arXiv.org.
    9. Francesco De Luca, 2023. "Advances in Climatic Form Finding in Architecture and Urban Design," Energies, MDPI, vol. 16(9), pages 1-18, May.
    10. Philipp Rode & Alexandra Gomes & Muhammad Adeel & Fizzah Sajjad & Andreas Koch & Syed Monjur Murshed, 2020. "Between Abundance and Constraints: The Natural Resource Equation of Asia’s Diverging, Higher-Income City Models," Land, MDPI, vol. 9(11), pages 1-33, October.
    11. Mohajeri, Nahid & Perera, A.T.D. & Coccolo, Silvia & Mosca, Lucas & Le Guen, Morgane & Scartezzini, Jean-Louis, 2019. "Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss village to 2050," Renewable Energy, Elsevier, vol. 143(C), pages 810-826.
    12. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
    13. Dan Zhu & Dexuan Song & Jie Shi & Jia Fang & Yili Zhou, 2020. "The Effect of Morphology on Solar Potential of High-Density Residential Area: A Case Study of Shanghai," Energies, MDPI, vol. 13(9), pages 1-17, May.
    14. Zhu, Rui & Cheng, Cheng & Santi, Paolo & Chen, Min & Zhang, Xiaohu & Mazzarello, Martina & Wong, Man Sing & Ratti, Carlo, 2022. "Optimization of photovoltaic provision in a three-dimensional city using real-time electricity demand," Applied Energy, Elsevier, vol. 316(C).
    15. Kobashi, Takuro & Choi, Younghun & Hirano, Yujiro & Yamagata, Yoshiki & Say, Kelvin, 2022. "Rapid rise of decarbonization potentials of photovoltaics plus electric vehicles in residential houses over commercial districts," Applied Energy, Elsevier, vol. 306(PB).
    16. Sassenou, L.-N. & Olivieri, L. & Olivieri, F., 2024. "Challenges for positive energy districts deployment: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    17. Perera, A.T.D. & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology," Applied Energy, Elsevier, vol. 285(C).
    18. Wang, Wei & Liu, Ke & Zhang, Muxing & Shen, Yuchi & Jing, Rui & Xu, Xiaodong, 2021. "From simulation to data-driven approach: A framework of integrating urban morphology to low-energy urban design," Renewable Energy, Elsevier, vol. 179(C), pages 2016-2035.
    19. Yanxue Li & Dawei Wang & Shanshan Li & Weijun Gao, 2021. "Impact Analysis of Urban Morphology on Residential District Heat Energy Demand and Microclimate Based on Field Measurement Data," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    20. Kittisak Lohwanitchai & Daranee Jareemit, 2021. "Modeling Energy Efficiency Performance and Cost-Benefit Analysis Achieving Net-Zero Energy Building Design: Case Studies of Three Representative Offices in Thailand," Sustainability, MDPI, vol. 13(9), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9023-:d:869622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.