IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i12p2330-d122883.html
   My bibliography  Save this article

Characteristics of Particulate Pollution (PM 2.5 and PM 10 ) and Their Spacescale-Dependent Relationships with Meteorological Elements in China

Author

Listed:
  • Xiaodong Li

    (College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
    Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China)

  • Xuwu Chen

    (College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
    Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China)

  • Xingzhong Yuan

    (College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
    Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China)

  • Guangming Zeng

    (College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
    Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China)

  • Tomás León

    (School of Public Health, University of California, Berkeley, CA 94720, USA)

  • Jie Liang

    (College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
    Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China)

  • Gaojie Chen

    (College of Mathematics and Econometrics, Hunan University, Changsha 410082, China)

  • Xinliang Yuan

    (College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
    Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China)

Abstract

Particulate matter (PM) pollution in China has an obvious characteristic of spatial distribution. It is well known that intensive anthropogenic activities, such as fossil fuel combustion and biomass burning, have great influence on the spatial distribution of PM pollution. However, the spacescale-dependent relationships between PM concentrations and weather conditions remain unclear. Here, we investigated the characteristics of two types of particulate pollution, including PM 2.5 and PM 10 , and their spatial relationships with meteorological elements in 173 cities throughout China from March 2014 to February 2015. Results: (1) High PM 2.5 concentrations were distinctly located southeast of the Hu Line, and high PM 10 concentrations were distinctly situated north of the Yangtze River; (2) Spacescale-dependent relationships were found between PM pollution and meteorological elements. The influence of temperature had similar inverted V-shaped characteristics, namely, there was serious PM pollution when temperature was about 15 °C, and there was slight PM pollution when temperature was less or more than 15 °C. Annual precipitation, wind speed, and relative humidity were negatively correlated with PM, while annual atmospheric pressure was positively correlated with PM; (3) The ideal meteorological regions were identified according to the quantified spatial relationships between PM and meteorological elements, which could be defined by a combination of the following conditions: (a) temperature <10 °C or >21 °C; (b) precipitation >1500 mm; (c) atmospheric pressure <900 hPa; (d) wind speed >3 m/s; and (e) relative humidity >65%, where air pollutants can easily be scavenged. The success of this research provides a meteorological explanation to the spatial distribution characteristics of PM pollution in China.

Suggested Citation

  • Xiaodong Li & Xuwu Chen & Xingzhong Yuan & Guangming Zeng & Tomás León & Jie Liang & Gaojie Chen & Xinliang Yuan, 2017. "Characteristics of Particulate Pollution (PM 2.5 and PM 10 ) and Their Spacescale-Dependent Relationships with Meteorological Elements in China," Sustainability, MDPI, vol. 9(12), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2330-:d:122883
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/12/2330/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/12/2330/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leying Wu & Zhangqi Zhong & Changxin Liu & Zheng Wang, 2017. "Examining PM 2.5 Emissions Embodied in China’s Supply Chain Using a Multiregional Input-Output Analysis," Sustainability, MDPI, vol. 9(5), pages 1-15, May.
    2. Chang Cao & Xuhui Lee & Shoudong Liu & Natalie Schultz & Wei Xiao & Mi Zhang & Lei Zhao, 2016. "Urban heat islands in China enhanced by haze pollution," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    3. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    4. Jianhui Xu & Hong Jiang & Zhongyong Xiao & Bin Wang & Jian Wu & Xin Lv, 2016. "Estimating Air Particulate Matter Using MODIS Data and Analyzing Its Spatial and Temporal Pattern over the Yangtze Delta Region," Sustainability, MDPI, vol. 8(9), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danyang Guo & Jilai Yu & Mingfei Ban, 2018. "Security-Constrained Unit Commitment Considering Differentiated Regional Air Pollutant Intensity," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    2. Xiangxue Zhang & Changxiu Cheng, 2022. "Temporal and Spatial Heterogeneity of PM 2.5 Related to Meteorological and Socioeconomic Factors across China during 2000–2018," IJERPH, MDPI, vol. 19(2), pages 1-15, January.
    3. Wissanupong Kliengchuay & Aronrag Cooper Meeyai & Suwalee Worakhunpiset & Kraichat Tantrakarnapa, 2018. "Relationships between Meteorological Parameters and Particulate Matter in Mae Hong Son Province, Thailand," IJERPH, MDPI, vol. 15(12), pages 1-13, December.
    4. Binxu Zhai & Jianguo Chen & Wenwen Yin & Zhongliang Huang, 2018. "Relevance Analysis on the Variety Characteristics of PM 2.5 Concentrations in Beijing, China," Sustainability, MDPI, vol. 10(9), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Wang & Guangxing Ji & Jisheng Xia, 2019. "Analysis of Regional Differences in Energy-Related PM 2.5 Emissions in China: Influencing Factors and Mitigation Countermeasures," Sustainability, MDPI, vol. 11(5), pages 1-14, March.
    2. Wenbin Shao & Fangyi Li & Zhaoyang Ye & Zhipeng Tang & Wu Xie & Yu Bai & Shanlin Yang, 2019. "Inter-Regional Spillover of Carbon Emissions and Employment in China: Is It Positive or Negative?," Sustainability, MDPI, vol. 11(13), pages 1-14, July.
    3. Peter Rafaj & Markus Amann, 2018. "Decomposing Air Pollutant Emissions in Asia: Determinants and Projections," Energies, MDPI, vol. 11(5), pages 1-14, May.
    4. Yali Zhong & Shuqing Chen & Haihua Mo & Weiwen Wang & Pengfei Yu & Xuemei Wang & Nima Chuduo & Bian Ba, 2022. "Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau," Climatic Change, Springer, vol. 175(1), pages 1-22, November.
    5. Xue-Ting Jiang & Min Su & Rongrong Li, 2018. "Decomposition Analysis in Electricity Sector Output from Carbon Emissions in China," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    6. Ze Liang & Yueyao Wang & Jiao Huang & Feili Wei & Shuyao Wu & Jiashu Shen & Fuyue Sun & Shuangcheng Li, 2020. "Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect," Energies, MDPI, vol. 13(22), pages 1-19, November.
    7. Ling, Zaili & Huang, Tao & Li, Jixiang & Zhou, Sheng & Lian, Lulu & Wang, Jinxiang & Zhao, Yuan & Mao, Xiaoxuan & Gao, Hong & Ma, Jianmin, 2019. "Sulfur dioxide pollution and energy justice in Northwestern China embodied in West-East Energy Transmission of China," Applied Energy, Elsevier, vol. 238(C), pages 547-560.
    8. Zhenjie Zang & Hua Zhang & Huifang Liu & Jun Wang & Kealeboga Fredah Goetswang, 2019. "Study on the Impact of the Export of China’s Final Use Products on Domestic SO 2 Emissions," Sustainability, MDPI, vol. 11(20), pages 1-16, October.
    9. Renfeng Ma & Congcong Wang & Yixia Jin & Xiaojing Zhou, 2019. "Estimating the Effects of Economic Agglomeration on Haze Pollution in Yangtze River Delta China Using an Econometric Analysis," Sustainability, MDPI, vol. 11(7), pages 1-19, March.
    10. Peng Zhang & Tianzeng Chen & Qingxin Ma & Biwu Chu & Yonghong Wang & Yujing Mu & Yunbo Yu & Hong He, 2022. "Diesel soot photooxidation enhances the heterogeneous formation of H2SO4," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Chen, Jing & Zhou, Chunshan & Wang, Shaojian & Li, Shijie, 2018. "Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2.5 concentrations in countries globally," Applied Energy, Elsevier, vol. 230(C), pages 94-105.
    12. Yan Yan & Ancheng Pan & Chunyou Wu & Shusen Gui, 2019. "Factors Influencing Indirect Carbon Emission of Residential Consumption in China: A Case of Liaoning Province," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    13. Qu, Weihua & Qu, Guohua & Zhang, Xindong & Robert, Dixon, 2021. "The impact of public participation in environmental behavior on haze pollution and public health in China," Economic Modelling, Elsevier, vol. 98(C), pages 319-335.
    14. Shichun Xu & Chang Gao & Yunfan Li & Xiaoxue Ma & Yifeng Zhou & Zhengxia He & Bin Zhao & Shuxiao Wang, 2019. "What Influences the Cross-Border Air Pollutant Transfer in China–United States Trade: A Comparative Analysis Using the Extended IO-SDA Method," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    15. Yu Sang Chang & Byong-Jin You & Hann Earl Kim, 2020. "Dynamic Trends of Fine Particulate Matter Exposure across 190 Countries: Analysis and Key Insights," Sustainability, MDPI, vol. 12(7), pages 1-34, April.
    16. Haibin Xia & Hui Wang & Guangxing Ji, 2019. "Regional Inequality and Influencing Factors of Primary PM Emissions in the Yangtze River Delta, China," Sustainability, MDPI, vol. 11(8), pages 1-14, April.
    17. Han Sun & Chao Huang & Shan Ni, 2022. "Driving factors of consumption-based PM2.5 emissions in China: an application of the generalized Divisia index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10209-10231, August.
    18. Jun Yang & Yongmei Miao & Yunfan Li & Yiwen Li & Xiaoxue Ma & Shichun Xu & Shuxiao Wang, 2019. "Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China at a Multi-Regional Level," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    19. Shichun Xu & Yongmei Miao & Yiwen Li & Yifeng Zhou & Xiaoxue Ma & Zhengxia He & Bin Zhao & Shuxiao Wang, 2019. "What Factors Drive Air Pollutants in China? An Analysis from the Perspective of Regional Difference Using a Combined Method of Production Decomposition Analysis and Logarithmic Mean Divisia Index," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    20. Lu Niu & Ronglin Tang & Yazhen Jiang & Xiaoming Zhou, 2020. "Spatiotemporal Patterns and Drivers of the Surface Urban Heat Island in 36 Major Cities in China: A Comparison of Two Different Methods for Delineating Rural Areas," Sustainability, MDPI, vol. 12(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2330-:d:122883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.