IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2910-d341981.html
   My bibliography  Save this article

Dynamic Trends of Fine Particulate Matter Exposure across 190 Countries: Analysis and Key Insights

Author

Listed:
  • Yu Sang Chang

    (Gachon Center for Convergence Research, Gachon University, 1342 Seongnam-daero, Sujung-gu, Gyeonggi-do 13120, Korea)

  • Byong-Jin You

    (President, Myongji University, 34 Geobukgol-ro, Seodaemun-gu, Seoul 03674, Korea)

  • Hann Earl Kim

    (Department of Global Business, Gachon University, 1342 Seongnam-daero, Sujung-gu, Gyeonggi-do 13120, Korea)

Abstract

Despite the fact that fine particulate matter (PM 2.5 ) causes serious health issues, few studies have investigated the level and annual rate of PM 2.5 change across a large number of countries. For a better understanding of the global trend of PM 2.5 , this study classified 190 countries into groups showing different trends of PM 2.5 change during the 2000–2014 period by estimating the progress ratio (PR) from the experience curve (EC), with PM 2.5 exposure (PME)–the population-weighted average annual concentration of PM 2.5 to which a person is exposed—as the dependent variable and the cumulative energy consumption as the independent variable. The results showed a wide variation of PRs across countries: While the average PR for 190 countries was 96.5%, indicating only a moderate decreasing PME trend of 3.5% for each doubling of the cumulative energy consumption, a majority of 118 countries experienced a decreasing trend of PME with an average PR of 88.1%, and the remaining 72 countries displayed an increasing trend with an average PR of 110.4%. When two different types of EC, classical and kinked, were applied, the chances of possible improvement in the future PME could be suggested in the descending order as follows: (1) the 60 countries with an increasing classical slope; (2) the 12 countries with an increasing kinked slope; (3) the 75 countries with a decreasing classical slope; and (4) the 43 countries with a decreasing kinked slope. The reason is that both increasing classical and kinked slopes are more likely to be replaced by decreasing kinked slopes, while decreasing classical and kinked slopes are less likely to change in the future. Population size seems to play a role: A majority of 52%, or 38 out of the 72 countries with an increasing slope, had a population size of bigger than 10 million inhabitants. Many of these countries came from SSA, EAP, and LAC regions. By identifying different patterns of past trends based on the analysis of PME for individual countries, this study suggests a possible change of the future slope for different groups of countries.

Suggested Citation

  • Yu Sang Chang & Byong-Jin You & Hann Earl Kim, 2020. "Dynamic Trends of Fine Particulate Matter Exposure across 190 Countries: Analysis and Key Insights," Sustainability, MDPI, vol. 12(7), pages 1-34, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2910-:d:341981
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang Guo & Tao Zhao & Yanan Wang & Yue Wang, 2016. "Estimating the abatement potential of provincial carbon intensity based on the environmental learning curve model in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 685-705, October.
    2. Yu Sang Chang & Dosoung Choi & Hann Earl Kim, 2017. "Dynamic Trends of Carbon Intensities among 127 Countries," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    3. Al-mulali, Usama & Lee, Janice YM & Hakim Mohammed, Abdul & Sheau-Ting, Low, 2013. "Examining the link between energy consumption, carbon dioxide emission, and economic growth in Latin America and the Caribbean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 42-48.
    4. Sagar, Ambuj D. & van der Zwaan, Bob, 2006. "Technological innovation in the energy sector: R&D, deployment, and learning-by-doing," Energy Policy, Elsevier, vol. 34(17), pages 2601-2608, November.
    5. Chen, Jing & Zhou, Chunshan & Wang, Shaojian & Li, Shijie, 2018. "Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2.5 concentrations in countries globally," Applied Energy, Elsevier, vol. 230(C), pages 94-105.
    6. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    7. Trappey, Amy J.C. & Trappey, Charles & Hsiao, C.T. & Ou, Jerry J.R. & Li, S.J. & Chen, Kevin W.P., 2012. "An evaluation model for low carbon island policy: The case of Taiwan's green transportation policy," Energy Policy, Elsevier, vol. 45(C), pages 510-515.
    8. E. Sica & S. Sušnik, 2014. "Geographical dimension and environmental Kuznets curve: the case of some less investigated air pollutants," Applied Economics Letters, Taylor & Francis Journals, vol. 21(14), pages 1010-1016, September.
    9. Rout, Ullash K. & Blesl, Markus & Fahl, Ulrich & Remme, Uwe & Voß, Alfred, 2009. "Uncertainty in the learning rates of energy technologies: An experiment in a global multi-regional energy system model," Energy Policy, Elsevier, vol. 37(11), pages 4927-4942, November.
    10. Wei, Max & Smith, Sarah Josephine & Sohn, Michael D., 2017. "Non-constant learning rates in retrospective experience curve analyses and their correlation to deployment programs," Energy Policy, Elsevier, vol. 107(C), pages 356-369.
    11. Yu, Shiwei & Agbemabiese, Lawrence & Zhang, Junjie, 2016. "Estimating the carbon abatement potential of economic sectors in China," Applied Energy, Elsevier, vol. 165(C), pages 107-118.
    12. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    13. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    14. Nikolaos Kouvaritakis & Antonio Soria & Stephane Isoard, 2000. "Modelling energy technology dynamics: methodology for adaptive expectations models with learning by doing and learning by searching," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 104-115.
    15. Yang, Siyuan & Chen, Bin & Wakeel, Muhammad & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "PM2.5 footprint of household energy consumption," Applied Energy, Elsevier, vol. 227(C), pages 375-383.
    16. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    17. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    18. Chang, Yusang & Lee, Jinsoo & Yoon, Hyerim, 2012. "Alternative projection of the world energy consumption-in comparison with the 2010 international energy outlook," Energy Policy, Elsevier, vol. 50(C), pages 154-160.
    19. Yu, Shiwei & Zhang, Junjie & Zheng, Shuhong & Sun, Han, 2015. "Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method," Energy Policy, Elsevier, vol. 77(C), pages 46-55.
    20. Lyu, Wanning & Yuan Li & Dabo Guan & Hongyan Zhao & Qiang Zhang & Zhu Liu, "undated". "Driving forces of Chinese primary air pollution emissions: an index decomposition analysis," Working Paper 428386, Harvard University OpenScholar.
    21. Shrestha, Ram M. & Pradhan, Shreekar, 2010. "Co-benefits of CO2 emission reduction in a developing country," Energy Policy, Elsevier, vol. 38(5), pages 2586-2597, May.
    22. Wei, Max & Smith, Sarah J. & Sohn, Michael D., 2017. "Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US," Applied Energy, Elsevier, vol. 191(C), pages 346-357.
    23. Ji, Xi & Yao, Yixin & Long, Xianling, 2018. "What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective," Energy Policy, Elsevier, vol. 119(C), pages 458-472.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hann-Earl Kim & Yu-Sang Chang & Hee-Jin Kim, 2021. "Dynamic Electricity Intensity Trends in 91 Countries," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    2. Buket Altinoz & Alper Aslan, 2022. "New insight to tourism-environment nexus in Mediterranean countries: evidence from panel vector autoregression approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 12263-12275, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Sang Chang & Dosoung Choi & Hann Earl Kim, 2017. "Dynamic Trends of Carbon Intensities among 127 Countries," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    2. Hann-Earl Kim & Yu-Sang Chang & Hee-Jin Kim, 2021. "Dynamic Electricity Intensity Trends in 91 Countries," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    3. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng & Vaz-Serra, Paulo, 2022. "Economic and environmental impacts of public investment in clean energy RD&D," Energy Policy, Elsevier, vol. 168(C).
    6. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    7. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    8. Upstill, Garrett & Hall, Peter, 2018. "Estimating the learning rate of a technology with multiple variants: The case of carbon storage," Energy Policy, Elsevier, vol. 121(C), pages 498-505.
    9. Schauf, Magnus & Schwenen, Sebastian, 2021. "Mills of progress grind slowly? Estimating learning rates for onshore wind energy," Energy Economics, Elsevier, vol. 104(C).
    10. Zakerinia, Saleh, 2018. "Understanding the Role of Transportation in Meeting California’s Greenhouse Gas Emissions Reduction Target: A Focus on Technology Forcing Policies, Interactions with the Electric Sector and Mitigation," Institute of Transportation Studies, Working Paper Series qt0r69m651, Institute of Transportation Studies, UC Davis.
    11. Thomassen, Gwenny & Van Passel, Steven & Dewulf, Jo, 2020. "A review on learning effects in prospective technology assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    12. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    13. Odam, Neil & de Vries, Frans P., 2020. "Innovation modelling and multi-factor learning in wind energy technology," Energy Economics, Elsevier, vol. 85(C).
    14. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Bento, Nuno & Gianfrate, Gianfranco & Groppo, Sara Virginia, 2019. "Do crowdfunding returns reward risk? Evidences from clean-tech projects," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 107-116.
    16. Shichun Xu & Yongmei Miao & Yiwen Li & Yifeng Zhou & Xiaoxue Ma & Zhengxia He & Bin Zhao & Shuxiao Wang, 2019. "What Factors Drive Air Pollutants in China? An Analysis from the Perspective of Regional Difference Using a Combined Method of Production Decomposition Analysis and Logarithmic Mean Divisia Index," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    17. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    18. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    19. Harborne, Paul & Hendry, Chris, 2009. "Pathways to commercial wind power in the US, Europe and Japan: The role of demonstration projects and field trials in the innovation process," Energy Policy, Elsevier, vol. 37(9), pages 3580-3595, September.
    20. Criqui, P. & Mima, S. & Menanteau, P. & Kitous, A., 2015. "Mitigation strategies and energy technology learning: An assessment with the POLES model," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 119-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2910-:d:341981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.