IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33120-3.html
   My bibliography  Save this article

Diesel soot photooxidation enhances the heterogeneous formation of H2SO4

Author

Listed:
  • Peng Zhang

    (Chinese Academy of Sciences)

  • Tianzeng Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qingxin Ma

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Biwu Chu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Yonghong Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yujing Mu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Yunbo Yu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Hong He

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

Abstract

Both field observation and experimental simulation have implied that black carbon or soot plays a remarkable role in the catalytic oxidation of SO2 for the formation of atmospheric sulfate. However, the catalytic mechanism remains ambiguous, especially that under light irradiation. Here we systematically investigate the heterogeneous conversion of SO2 on diesel soot or black carbon (DBC) under light irradiation. The experimental results show that the presence of DBC under light irradiation can significantly promote the heterogeneous conversion of SO2 to H2SO4, mainly through the heterogeneous reaction between SO2 and photo-induced OH radicals. The detected photo-chemical behaviors on DBC suggest that OH radical formation is closely related to the abstraction and transfer of electrons in DBC and the formation of reactive superoxide radical (•O2−) as an intermediate. Our results extend the known sources of atmospheric H2SO4 and provide insight into the internal photochemical oxidation mechanism of SO2 on DBC.

Suggested Citation

  • Peng Zhang & Tianzeng Chen & Qingxin Ma & Biwu Chu & Yonghong Wang & Yujing Mu & Yunbo Yu & Hong He, 2022. "Diesel soot photooxidation enhances the heterogeneous formation of H2SO4," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33120-3
    DOI: 10.1038/s41467-022-33120-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33120-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33120-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Junfeng Wang & Jingyi Li & Jianhuai Ye & Jian Zhao & Yangzhou Wu & Jianlin Hu & Dantong Liu & Dongyang Nie & Fuzhen Shen & Xiangpeng Huang & Dan Dan Huang & Dongsheng Ji & Xu Sun & Weiqi Xu & Jianping, 2020. "Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    2. Kholod, Nazar & Evans, Meredydd, 2016. "Reducing black carbon emissions from diesel vehicles in Russia: An assessment and policy recommendations," Environmental Science & Policy, Elsevier, vol. 56(C), pages 1-8.
    3. M. Ammann & M. Kalberer & D. T. Jost & L. Tobler & E. Rössler & D. Piguet & H. W. Gäggeler & U. Baltensperger, 1998. "Heterogeneous production of nitrous acid on soot in polluted air masses," Nature, Nature, vol. 395(6698), pages 157-160, September.
    4. Chang Cao & Xuhui Lee & Shoudong Liu & Natalie Schultz & Wei Xiao & Mi Zhang & Lei Zhao, 2016. "Urban heat islands in China enhanced by haze pollution," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    5. Chenliang Su & Muge Acik & Kazuyuki Takai & Jiong Lu & Si-jia Hao & Yi Zheng & Pingping Wu & Qiaoliang Bao & Toshiaki Enoki & Yves J. Chabal & Kian Ping Loh, 2012. "Probing the catalytic activity of porous graphene oxide and the origin of this behaviour," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    6. Mark Z. Jacobson, 2001. "Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols," Nature, Nature, vol. 409(6821), pages 695-697, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song Gao, 2015. "Managing short-lived climate forcers in curbing climate change: an atmospheric chemistry synopsis," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(2), pages 130-137, June.
    2. Yali Zhong & Shuqing Chen & Haihua Mo & Weiwen Wang & Pengfei Yu & Xuemei Wang & Nima Chuduo & Bian Ba, 2022. "Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau," Climatic Change, Springer, vol. 175(1), pages 1-22, November.
    3. Chao Chen & Yinglin Liang & Zhilong Chen & Changwu Zou & Zongbo Shi, 2024. "Black Carbon in Climate Studies: A Bibliometric Analysis of Research Trends and Topics," Sustainability, MDPI, vol. 16(20), pages 1-20, October.
    4. Xiuyun Min & Jun Wu & Jian Lu & Chunliang Gao, 2019. "Effects of Yak Dung Biomass Black Carbon on the Soil Physicochemical Properties of the Northeastern Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 11(6), pages 1-11, March.
    5. PCS Devara & K Vijayakumar & SVB Rao & CK Jayasankar & SM Sonbawne & BN Holben & DM Giles, 2019. "Study of Aerosols Over Indian Subcontinent During El Nino and La Nina Events: Inferring Land-Air-Sea Interactions," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 16(5), pages 99-108, January.
    6. Ze Liang & Yueyao Wang & Jiao Huang & Feili Wei & Shuyao Wu & Jiashu Shen & Fuyue Sun & Shuangcheng Li, 2020. "Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect," Energies, MDPI, vol. 13(22), pages 1-19, November.
    7. Wang, Wenchao & Zhang, Huicong & Wang, Hua & Li, Fashe, 2023. "All-round inhibition of soot generation during diesel combustion by oxygenated biomass fuels: A numerical simulation and experimental study," Renewable Energy, Elsevier, vol. 215(C).
    8. Kyong-Hui Lee & Hye-Jung Jung & Dong-Uk Park & Seung-Hun Ryu & Boowook Kim & Kwon-Chul Ha & Seungwon Kim & Gwangyong Yi & Chungsik Yoon, 2015. "Occupational Exposure to Diesel Particulate Matter in Municipal Household Waste Workers," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-17, August.
    9. Wei-Hung Lien & Patrick Opiyo Owili & Miriam Adoyo Muga & Tang-Huang Lin, 2019. "Ambient Particulate Matter Exposure and Under-Five and Maternal Deaths in Asia," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    10. Chen, Chen & Zhao, Xuan & Qi, Dandan & Yang, Kaixuan & Xu, Lei & Li, Tianjiao & Ying, Yaoyao & Liu, Dong, 2023. "Sooting transition diagnostics in counter-flow flames of C4 isomer fuels," Energy, Elsevier, vol. 262(PB).
    11. Orihuela, M. Pilar & Chacartegui, Ricardo & Martínez-Fernández, Julián, 2020. "New biomorphic filters to face upcoming particulate emissions policies: A review of the FIL-BIO-DIESEL project," Energy, Elsevier, vol. 201(C).
    12. Siqi Liu & David Jassby & Daniel Mandler & Andrea I. Schäfer, 2024. "Differentiation of adsorption and degradation in steroid hormone micropollutants removal using electrochemical carbon nanotube membrane," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Renfeng Ma & Congcong Wang & Yixia Jin & Xiaojing Zhou, 2019. "Estimating the Effects of Economic Agglomeration on Haze Pollution in Yangtze River Delta China Using an Econometric Analysis," Sustainability, MDPI, vol. 11(7), pages 1-19, March.
    14. Streets, D.G., 2003. "Environmental benefits of electricity grid interconnections in Northeast Asia," Energy, Elsevier, vol. 28(8), pages 789-807.
    15. Chu, Huaqiang & Han, Weiwei & Cao, Wenjian & Gu, Mingyan & Xu, Guangju, 2019. "Effect of methane addition to ethylene on the morphology and size distribution of soot in a laminar co-flow diffusion flame," Energy, Elsevier, vol. 166(C), pages 392-400.
    16. Mengxi Qi & Lei Jiang & Yixuan Liu & Qiulin Xiong & Chunyuan Sun & Xing Li & Wenji Zhao & Xingchuan Yang, 2018. "Analysis of the Characteristics and Sources of Carbonaceous Aerosols in PM 2.5 in the Beijing, Tianjin, and Langfang Region, China," IJERPH, MDPI, vol. 15(7), pages 1-14, July.
    17. Cheng Chen & Oleg Dubovik & Gregory L. Schuster & Mian Chin & Daven K. Henze & Tatyana Lapyonok & Zhengqiang Li & Yevgeny Derimian & Ying Zhang, 2022. "Multi-angular polarimetric remote sensing to pinpoint global aerosol absorption and direct radiative forcing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Qu, Weihua & Qu, Guohua & Zhang, Xindong & Robert, Dixon, 2021. "The impact of public participation in environmental behavior on haze pollution and public health in China," Economic Modelling, Elsevier, vol. 98(C), pages 319-335.
    19. Lv, Zongyan & Wu, Lin & Yang, Zhiwen & Yang, Lei & Fang, Tiange & Mao, Hongjun, 2023. "Comparison on real-world driving emission characteristics of CNG, LNG and Hybrid-CNG buses," Energy, Elsevier, vol. 262(PB).
    20. S. Tiwari & A. Srivastava & D. Bisht & P. Safai & P. Parmita, 2013. "Assessment of carbonaceous aerosol over Delhi in the Indo-Gangetic Basin: characterization, sources and temporal variability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1745-1764, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33120-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.