IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12509.html
   My bibliography  Save this article

Urban heat islands in China enhanced by haze pollution

Author

Listed:
  • Chang Cao

    (Yale-NUIST Center on Atmospheric Environment and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology
    School of Forestry and Environmental Studies, Yale University)

  • Xuhui Lee

    (Yale-NUIST Center on Atmospheric Environment and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology
    School of Forestry and Environmental Studies, Yale University)

  • Shoudong Liu

    (Yale-NUIST Center on Atmospheric Environment and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology)

  • Natalie Schultz

    (School of Forestry and Environmental Studies, Yale University)

  • Wei Xiao

    (Yale-NUIST Center on Atmospheric Environment and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology
    School of Forestry and Environmental Studies, Yale University)

  • Mi Zhang

    (Yale-NUIST Center on Atmospheric Environment and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology)

  • Lei Zhao

    (Yale-NUIST Center on Atmospheric Environment and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology
    School of Forestry and Environmental Studies, Yale University
    Woodrow Wilson School of Public and International Affairs, Princeton University)

Abstract

The urban heat island (UHI), the phenomenon of higher temperatures in urban land than the surrounding rural land, is commonly attributed to changes in biophysical properties of the land surface associated with urbanization. Here we provide evidence for a long-held hypothesis that the biogeochemical effect of urban aerosol or haze pollution is also a contributor to the UHI. Our results are based on satellite observations and urban climate model calculations. We find that a significant factor controlling the nighttime surface UHI across China is the urban–rural difference in the haze pollution level. The average haze contribution to the nighttime surface UHI is 0.7±0.3 K (mean±1 s.e.) for semi-arid cities, which is stronger than that in the humid climate due to a stronger longwave radiative forcing of coarser aerosols. Mitigation of haze pollution therefore provides a co-benefit of reducing heat stress on urban residents.

Suggested Citation

  • Chang Cao & Xuhui Lee & Shoudong Liu & Natalie Schultz & Wei Xiao & Mi Zhang & Lei Zhao, 2016. "Urban heat islands in China enhanced by haze pollution," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12509
    DOI: 10.1038/ncomms12509
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12509
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12509?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jing & Li, Yazhou & Wu, Jianlin & Gu, Jibao & Xu, Shuo, 2020. "Environmental beliefs and public acceptance of nuclear energy in China: A moderated mediation analysis," Energy Policy, Elsevier, vol. 137(C).
    2. Qu, Weihua & Qu, Guohua & Zhang, Xindong & Robert, Dixon, 2021. "The impact of public participation in environmental behavior on haze pollution and public health in China," Economic Modelling, Elsevier, vol. 98(C), pages 319-335.
    3. Yali Zhong & Shuqing Chen & Haihua Mo & Weiwen Wang & Pengfei Yu & Xuemei Wang & Nima Chuduo & Bian Ba, 2022. "Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau," Climatic Change, Springer, vol. 175(1), pages 1-22, November.
    4. Renfeng Ma & Congcong Wang & Yixia Jin & Xiaojing Zhou, 2019. "Estimating the Effects of Economic Agglomeration on Haze Pollution in Yangtze River Delta China Using an Econometric Analysis," Sustainability, MDPI, vol. 11(7), pages 1-19, March.
    5. Peng Zhang & Tianzeng Chen & Qingxin Ma & Biwu Chu & Yonghong Wang & Yujing Mu & Yunbo Yu & Hong He, 2022. "Diesel soot photooxidation enhances the heterogeneous formation of H2SO4," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Lu Niu & Ronglin Tang & Yazhen Jiang & Xiaoming Zhou, 2020. "Spatiotemporal Patterns and Drivers of the Surface Urban Heat Island in 36 Major Cities in China: A Comparison of Two Different Methods for Delineating Rural Areas," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    7. Xiaodong Li & Xuwu Chen & Xingzhong Yuan & Guangming Zeng & Tomás León & Jie Liang & Gaojie Chen & Xinliang Yuan, 2017. "Characteristics of Particulate Pollution (PM 2.5 and PM 10 ) and Their Spacescale-Dependent Relationships with Meteorological Elements in China," Sustainability, MDPI, vol. 9(12), pages 1-14, December.
    8. Cheng Zhong & Chen Chen & Yue Liu & Peng Gao & Hui Li, 2019. "A Specific Study on the Impacts of PM2.5 on Urban Heat Islands with Detailed In Situ Data and Satellite Images," Sustainability, MDPI, vol. 11(24), pages 1-10, December.
    9. Ze Liang & Yueyao Wang & Jiao Huang & Feili Wei & Shuyao Wu & Jiashu Shen & Fuyue Sun & Shuangcheng Li, 2020. "Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect," Energies, MDPI, vol. 13(22), pages 1-19, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.