IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p478-d306404.html
   My bibliography  Save this article

Spatiotemporal Patterns and Drivers of the Surface Urban Heat Island in 36 Major Cities in China: A Comparison of Two Different Methods for Delineating Rural Areas

Author

Listed:
  • Lu Niu

    (State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Ronglin Tang

    (State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yazhen Jiang

    (State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xiaoming Zhou

    (School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

Abstract

Urban heat islands (UHIs) are an important issue in urban sustainability, and the standardized calculation of surface urban heat island (SUHI) intensity has been a common concern of researchers in the past. In this study, we used the administrative borders (AB) method and an optimized simplified urban-extent (OSUE) algorithm to calculate the surface urban heat island intensity from 2001 to 2017 for 36 major cities in mainland China by using Moderate Resolution Imaging Spectroradiometer (MODIS) images. The spatiotemporal differences between these two methods were analyzed from the perspectives of the regional and national patterns and the daily, monthly, and annual trends. Regardless of the spatial or temporal scale, the calculation results of these two methods showed extremely similar patterns, especially for the daytime. However, when the calculated SUHI intensities were investigated through a regression analysis with multiple driving factors, we found that, although natural conditions were the main drivers for both methods, the anthropogenic factors obtained from statistical data (population and gross domestic product) were more correlated with the SUHI intensity from the AB method. This trend was probably caused by the spatial extent of the statistical data, which aligned more closely with the rural extent in the AB method. This study not only explores the standardization of the calculation of urban heat intensity but also provides insights into the relationship between urban development and the SUHI.

Suggested Citation

  • Lu Niu & Ronglin Tang & Yazhen Jiang & Xiaoming Zhou, 2020. "Spatiotemporal Patterns and Drivers of the Surface Urban Heat Island in 36 Major Cities in China: A Comparison of Two Different Methods for Delineating Rural Areas," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:478-:d:306404
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:wyi:journl:002258 is not listed on IDEAS
    2. Chang Cao & Xuhui Lee & Shoudong Liu & Natalie Schultz & Wei Xiao & Mi Zhang & Lei Zhao, 2016. "Urban heat islands in China enhanced by haze pollution," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    3. Yaoping Cui & Xinliang Xu & Jinwei Dong & Yaochen Qin, 2016. "Influence of Urbanization Factors on Surface Urban Heat Island Intensity: A Comparison of Countries at Different Developmental Phases," Sustainability, MDPI, vol. 8(8), pages 1-14, July.
    4. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    5. Gao, Xiang & Long, Cheryl Xiaoning, 2014. "Cultural border, administrative border, and regional economic development: Evidence from Chinese cities," China Economic Review, Elsevier, vol. 31(C), pages 247-264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuji Murayama & Matamyo Simwanda & Manjula Ranagalage, 2021. "Spatiotemporal Analysis of Urbanization Using GIS and Remote Sensing in Developing Countries," Sustainability, MDPI, vol. 13(7), pages 1-5, March.
    2. Nadeem Ullah & Muhammad Amir Siddique & Mengyue Ding & Sara Grigoryan & Irshad Ahmad Khan & Zhihao Kang & Shangen Tsou & Tianlin Zhang & Yike Hu & Yazhuo Zhang, 2023. "The Impact of Urbanization on Urban Heat Island: Predictive Approach Using Google Earth Engine and CA-Markov Modelling (2005–2050) of Tianjin City, China," IJERPH, MDPI, vol. 20(3), pages 1-15, February.
    3. He, Bao-Jie & Wang, Junsong & Zhu, Jin & Qi, Jinda, 2022. "Beating the urban heat: Situation, background, impacts and the way forward in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Muhammad Sajid Mehmood & Zeeshan Zafar & Muhammad Sajjad & Sadam Hussain & Shiyan Zhai & Yaochen Qin, 2022. "Time Series Analyses and Forecasting of Surface Urban Heat Island Intensity Using ARIMA Model in Punjab, Pakistan," Land, MDPI, vol. 12(1), pages 1-20, December.
    5. Paul Eduardo Vásquez-Álvarez & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & Sandra Lucía Cobos-Mora, 2022. "Urban Heat Island Mitigation through Planned Simulation," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    6. Xuexiu Zhao & Yanwen Luo & Jiang He, 2020. "Analysis of the Thermal Environment in Pedestrian Space Using 3D Thermal Imaging," Energies, MDPI, vol. 13(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaobin Yang & Xingyuan He & Fengqin Yan & Lingxue Yu & Kun Bu & Jiuchun Yang & Liping Chang & Shuwen Zhang, 2017. "Mapping the Influence of Land Use/Land Cover Changes on the Urban Heat Island Effect—A Case Study of Changchun, China," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    2. Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
    3. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    4. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    5. Michael Tong & Berhanu Wondmagegn & Jianjun Xiang & Alana Hansen & Keith Dear & Dino Pisaniello & Blesson Varghese & Jianguo Xiao & Le Jian & Benjamin Scalley & Monika Nitschke & John Nairn & Hilary B, 2022. "Hospitalization Costs of Respiratory Diseases Attributable to Temperature in Australia and Projections for Future Costs in the 2030s and 2050s under Climate Change," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
    6. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    7. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    8. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    9. Louise Bedsworth, 2012. "California’s local health agencies and the state’s climate adaptation strategy," Climatic Change, Springer, vol. 111(1), pages 119-133, March.
    10. Daniele Martini & Pietro Bezzini & Michela Longo, 2024. "Environmental Impact of Electrification on Local Public Transport: Preliminary Study," Energies, MDPI, vol. 17(23), pages 1-23, November.
    11. Menconi, M.E. & Giordano, S. & Grohmann, D., 2022. "Revisiting global food production and consumption patterns by developing resilient food systems for local communities," Land Use Policy, Elsevier, vol. 119(C).
    12. Jiale Tang & Xincan Lan & Yuanyuan Lian & Fang Zhao & Tianqi Li, 2022. "Estimation of Urban–Rural Land Surface Temperature Difference at Different Elevations in the Qinling–Daba Mountains Using MODIS and the Random Forest Model," IJERPH, MDPI, vol. 19(18), pages 1-12, September.
    13. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    14. Alper Ozpinar, 2023. "A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment," Energies, MDPI, vol. 16(5), pages 1-22, March.
    15. Flückiger, Matthias & Ludwig, Markus, 2022. "Temperature and risk of diarrhoea among children in Sub-Saharan Africa," World Development, Elsevier, vol. 160(C).
    16. Yali Zhong & Shuqing Chen & Haihua Mo & Weiwen Wang & Pengfei Yu & Xuemei Wang & Nima Chuduo & Bian Ba, 2022. "Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau," Climatic Change, Springer, vol. 175(1), pages 1-22, November.
    17. Nicholas A. Mailloux & Colleen P. Henegan & Dorothy Lsoto & Kristen P. Patterson & Paul C. West & Jonathan A. Foley & Jonathan A. Patz, 2021. "Climate Solutions Double as Health Interventions," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    18. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    19. Shinji Otani & Satomi Funaki Ishizu & Toshio Masumoto & Hiroki Amano & Youichi Kurozawa, 2021. "The Effect of Minimum and Maximum Air Temperatures in the Summer on Heat Stroke in Japan: A Time-Stratified Case-Crossover Study," IJERPH, MDPI, vol. 18(4), pages 1-12, February.
    20. Laetitia H. M. Schmitt & Hilary M. Graham & Piran C. L. White, 2016. "Economic Evaluations of the Health Impacts of Weather-Related Extreme Events: A Scoping Review," IJERPH, MDPI, vol. 13(11), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:478-:d:306404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.