IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i12p2213-d121044.html
   My bibliography  Save this article

Delimiting Urban Growth Boundary through Combining Land Suitability Evaluation and Cellular Automata

Author

Listed:
  • Qing Zheng

    (Institute of Agriculture Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

  • Xuan Yang

    (Institute of Agriculture Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

  • Ke Wang

    (Institute of Agriculture Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

  • Lingyan Huang

    (Institute of Agriculture Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

  • Amir Reza Shahtahmassebi

    (Institute of Agriculture Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

  • Muye Gan

    (Institute of Agriculture Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

  • Melanie Valerie Weston

    (Institute of Agriculture Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

Abstract

China’s domestic urban planning only worked on researches of urban space control, the scope definition of urban development is not clear enough. The purpose of this study is to present a new urban growth boundary (UGB) delimitation method which combined land suitability evaluation (LSE) and cellular automata (CA). This method gave credence to LSE’s advantage in sustainable land use, and CA’s advantage in objective dynamic simulation. The ecological limitation areas were defined by LSE, which were regarded as the restricted areas of urban growth; meanwhile, it was taken as an important model input to guide intensive land allocation in urban growth model (CA model). The future urban growth scenarios were predicted by CA model and the corresponding UGB lines were delineated by ArcGIS 10.1. The results indicated that this method had good performance in Ningbo’s urban growth simulation. When compared to the planned UGB in urban master planning, the simulated UGBs under port development and regulated scenarios showed more intensive and suitable spatial layout of land. Besides, the simulated UGB under regulated scenario had the most reasonable space structure and the largest ecological protection effect among the UGBs. Hence, the simulated UGBs were superior to the planned UGB. The study recommends that this UGB delimitation method can promote sustainability of land development and ecological environment in Chinese cities.

Suggested Citation

  • Qing Zheng & Xuan Yang & Ke Wang & Lingyan Huang & Amir Reza Shahtahmassebi & Muye Gan & Melanie Valerie Weston, 2017. "Delimiting Urban Growth Boundary through Combining Land Suitability Evaluation and Cellular Automata," Sustainability, MDPI, vol. 9(12), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2213-:d:121044
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/12/2213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/12/2213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F Wu & C J Webster, 1998. "Simulation of Land Development through the Integration of Cellular Automata and Multicriteria Evaluation," Environment and Planning B, , vol. 25(1), pages 103-126, February.
    2. Amnon Frenkel & Daniel Orenstein, 2012. "Can Urban Growth Management Work in an Era of Political and Economic Change?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 78(1), pages 16-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongjiu Feng & Jiafeng Wang & Xiaohua Tong & Yang Liu & Zhenkun Lei & Chen Gao & Shurui Chen, 2018. "The Effect of Observation Scale on Urban Growth Simulation Using Particle Swarm Optimization-Based CA Models," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    2. Honglei Jiang & Xia Xu & Mengxi Guan & Lingfei Wang & Yongmei Huang & Yinghui Liu, 2019. "Simulation of Spatiotemporal Land Use Changes for Integrated Model of Socioeconomic and Ecological Processes in China," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    3. Yue Su & Chong Su & Yan Xie & Tan Li & Yongjun Li & Yuanyuan Sun, 2022. "Controlling Non-Grain Production Based on Cultivated Land Multifunction Assessment," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    4. Ustaoglu, E. & Aydınoglu, A.C., 2020. "Suitability evaluation of urban construction land in Pendik district of Istanbul, Turkey," Land Use Policy, Elsevier, vol. 99(C).
    5. Ayodele Adekunle Faiyetole & Victor Ayodeji Adewumi, 2024. "Urban expansion and transportation interaction: Evidence from Akure, southwestern Nigeria," Environment and Planning B, , vol. 51(1), pages 57-74, January.
    6. Ying Zheng & Jingzhu Zhao & Guofan Shao, 2020. "Port City Sustainability: A Review of Its Research Trends," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    7. Yongjiu Feng & Qianqian Yang & Xiaohua Tong & Jiafeng Wang & Shurui Chen & Zhenkun Lei & Chen Gao, 2019. "Long-Term Regional Environmental Risk Assessment and Future Scenario Projection at Ningbo, China Coupling the Impact of Sea Level Rise," Sustainability, MDPI, vol. 11(6), pages 1-19, March.
    8. Xidong Chen & Ruifeng Zhao & Peiji Shi & Lihua Zhang & Xiaoxin Yue & Ziyi Han & Jingfa Wang & Hanmei Dou, 2023. "Land Use Optimization Embedding in Ecological Suitability in the Embryonic Urban Agglomeration," Land, MDPI, vol. 12(6), pages 1-24, June.
    9. Chen, Yong, 2020. "Effects of development tax on leapfrog sprawl in a thinly traded land market," Land Use Policy, Elsevier, vol. 92(C).
    10. Zhou, Ting & Yang, Xi & Ke, Xinli, 2022. "Delimitation of urban growth boundaries by integratedly incorporating ecosystem conservation, cropland protection and urban compactness," Ecological Modelling, Elsevier, vol. 468(C).
    11. Amal Najihah Muhamad Nor & Hasifah Abdul Aziz & Siti Aisyah Nawawi & Rohazaini Muhammad Jamil & Muhamad Azahar Abas & Kamarul Ariffin Hambali & Abdul Hafidz Yusoff & Norfadhilah Ibrahim & Nur Hairunni, 2021. "Evolution of Green Space under Rapid Urban Expansion in Southeast Asian Cities," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    12. Xindong He & Xianmin Mai & Guoqiang Shen, 2019. "Delineation of Urban Growth Boundaries with SD and CLUE-s Models under Multi-Scenarios in Chengdu Metropolitan Area," Sustainability, MDPI, vol. 11(21), pages 1-13, October.
    13. Eda Ustaoglu & Mustafa Erdem Kabadayı, 2021. "Reconstruction of Residential Land Cover and Spatial Analysis of Population in Bursa Region (Turkey) in the Mid-Nineteenth Century," Land, MDPI, vol. 10(10), pages 1-34, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pankaj Bajracharya & Selima Sultana, 2022. "Examining the Use of Urban Growth Boundary for Future Urban Expansion of Chattogram, Bangladesh," Sustainability, MDPI, vol. 14(9), pages 1-21, May.
    2. Shuangqing Sheng & Wei Song & Hua Lian & Lei Ning, 2022. "Review of Urban Land Management Based on Bibliometrics," Land, MDPI, vol. 11(11), pages 1-25, November.
    3. Jonathan Jackson & Meg Holden, 2013. "Sustainable Development Compromise[d] in the Planning of Metro Vancouver’s Agricultural Lands—the Jackson Farm Case," Sustainability, MDPI, vol. 5(11), pages 1-27, November.
    4. Di Traglia, Mario & Attorre, Fabio & Francesconi, Fabio & Valenti, Roberto & Vitale, Marcello, 2011. "Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach," Ecological Modelling, Elsevier, vol. 222(4), pages 925-934.
    5. Han, Yu & Jia, Haifeng, 2017. "Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China," Ecological Modelling, Elsevier, vol. 353(C), pages 107-116.
    6. Jing Yang & Feng Shi & Yizhong Sun & Jie Zhu, 2019. "A Cellular Automata Model Constrained by Spatiotemporal Heterogeneity of the Urban Development Strategy for Simulating Land-use Change: A Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(15), pages 1-19, July.
    7. Liu, Dongya & Zheng, Xinqi & Zhang, Chunxiao & Wang, Hongbin, 2017. "A new temporal–spatial dynamics method of simulating land-use change," Ecological Modelling, Elsevier, vol. 350(C), pages 1-10.
    8. Deal, Brian & Schunk, Daniel, 2004. "Spatial dynamic modeling and urban land use transformation: a simulation approach to assessing the costs of urban sprawl," Ecological Economics, Elsevier, vol. 51(1-2), pages 79-95, November.
    9. Yan Liu & Yongjiu Feng, 2016. "Simulating the Impact of Economic and Environmental Strategies on Future Urban Growth Scenarios in Ningbo, China," Sustainability, MDPI, vol. 8(10), pages 1-16, October.
    10. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    11. repec:asg:wpaper:1038 is not listed on IDEAS
    12. Saisai Wu & Lang Qin & Chen Shen & Xiangyang Zhou & Jianzhai Wu, 2022. "Food Retail Network Spatial Matching and Urban Planning Policy Implications: The Case of Beijing, China," Land, MDPI, vol. 11(5), pages 1-19, May.
    13. Tomasz Zaborowski, 2021. "It’s All about Details. Why the Polish Land Policy Framework Fails to Manage Designation of Developable Land," Land, MDPI, vol. 10(9), pages 1-27, August.
    14. Assem Abu Hatab & Maria Eduarda Rigo Cavinato & Carl Johan Lagerkvist, 2019. "Urbanization, livestock systems and food security in developing countries: A systematic review of the literature," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(2), pages 279-299, April.
    15. Feitelson, Eran, 2018. "Shifting sands of planning in Israel," Land Use Policy, Elsevier, vol. 79(C), pages 695-706.
    16. Sorel, Luc & Viaud, Valérie & Durand, Patrick & Walter, Christian, 2010. "Modeling spatio-temporal crop allocation patterns by a stochastic decision tree method, considering agronomic driving factors," Agricultural Systems, Elsevier, vol. 103(9), pages 647-655, November.
    17. Xuesong Gao & Yu Liu & Lun Liu & Qiquan Li & Ouping Deng & Yali Wei & Jing Ling & Min Zeng, 2018. "Is Big Good or Bad?: Testing the Performance of Urban Growth Cellular Automata Simulation at Different Spatial Extents," Sustainability, MDPI, vol. 10(12), pages 1-10, December.
    18. Lei Fang & Yingjie Wang, 2018. "Multi-Disciplinary Determination of the Rural/Urban Boundary: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 10(8), pages 1-13, July.
    19. Jun Ren & Wei Zhou & Xuelu Liu & Liang Zhou & Jing Guo & Yonghao Wang & Yanjun Guan & Jingtian Mao & Yuhan Huang & Rongrong Ma, 2019. "Urban Expansion and Growth Boundaries in an Oasis City in an Arid Region: A Case Study of Jiayuguan City, China," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    20. Thekdi, Shital A. & Lambert, James H., 2015. "Integrated risk management of safety and development on transportation corridors," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 1-12.
    21. Jiangfeng She & Zhongqing Guan & Fangfang Cai & Lijie Pu & Junzhong Tan & Tao Chen, 2017. "Simulation of Land Use Changes in a Coastal Reclaimed Area with Dynamic Shorelines," Sustainability, MDPI, vol. 9(3), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2213-:d:121044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.