IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i9p883-d77241.html
   My bibliography  Save this article

Evaluating Thermal and Lighting Energy Performance of Shading Devices on Kinetic Façades

Author

Listed:
  • Dong-Seok Lee

    (Department of Architectural Engineering, Inha University, Incheon 22212, Korea)

  • Sung-Han Koo

    (BRE Global, Bucknalls Lane, Garston, Watford WD25 9XX, UK)

  • Yoon-Bok Seong

    (Construction & Energy Business Division, Korea Conformity Laboratories, Seoul 08503, Korea)

  • Jae-Hun Jo

    (Department of Architectural Engineering, Inha University, Incheon 22212, Korea)

Abstract

In order to evaluate the thermal and lighting energy performance of a kinetic façade using external movable shading devices, it is important to consider the operation of the shading devices since it can influence the performance significantly. This study proposes a calculation methodology which assesses the performance of the movable shading devices with the consideration of the movements of the shading devices. Calculation methods were derived by which solar heat gain, lighting energy requirement, and the primary energy equivalent to heating and cooling energy requirement can be obtained. Using the calculation methods, the optimal operation scenario for the movable shading devices was presented which can minimize the solar heat gain and lighting energy requirement. A comparison case study was carried out to demonstrate the use of the control strategies for a building where a drop awning was installed. The results showed that the optimal operation scenario suggested in this study can potentially deliver effective energy performance. The limitation and applicability of the suggested method were also discussed.

Suggested Citation

  • Dong-Seok Lee & Sung-Han Koo & Yoon-Bok Seong & Jae-Hun Jo, 2016. "Evaluating Thermal and Lighting Energy Performance of Shading Devices on Kinetic Façades," Sustainability, MDPI, vol. 8(9), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:9:p:883-:d:77241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/9/883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/9/883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Perez-Lombard, Luis & Ortiz, Jose & Maestre, Ismael R., 2011. "The map of energy flow in HVAC systems," Applied Energy, Elsevier, vol. 88(12), pages 5020-5031.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su-Ji Choi & Dong-Seok Lee & Jae-Hun Jo, 2017. "Method of Deriving Shaded Fraction According to Shading Movements of Kinetic Façade," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    2. Michaël Rakotonjanahary & Frank Scholzen & Daniele Waldmann, 2020. "Summertime Overheating Risk Assessment of a Flexible Plug-In Modular Unit in Luxembourg," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    3. Cansu Iraz Seyrek & Barbara Widera & Agata Woźniczka, 2021. "Sustainability-Related Parameters and Decision Support Tools for Kinetic Green Façades," Sustainability, MDPI, vol. 13(18), pages 1-16, September.
    4. Hwang Yi & Mi-Jin Kim & Yuri Kim & Sun-Sook Kim & Kyu-In Lee, 2019. "Rapid Simulation of Optimally Responsive Façade during Schematic Design Phases: Use of a New Hybrid Metaheuristic Algorithm," Sustainability, MDPI, vol. 11(9), pages 1-28, May.
    5. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schito, Eva & Conti, Paolo & Testi, Daniele, 2018. "Multi-objective optimization of microclimate in museums for concurrent reduction of energy needs, visitors’ discomfort and artwork preservation risks," Applied Energy, Elsevier, vol. 224(C), pages 147-159.
    2. Paoli, Leonardo & Lupton, Richard C. & Cullen, Jonathan M., 2018. "Useful energy balance for the UK: An uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 176-188.
    3. Yu, Xinran & Ergan, Semiha & Dedemen, Gokmen, 2019. "A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Zhang, Xinghui & Yang, Jiaojiao & Zhao, Xudong, 2018. "Optimal study of the rural house space heating systems employing the AHP and FCE methods," Energy, Elsevier, vol. 150(C), pages 631-641.
    5. Adriana Greco & Edison Gundabattini & Darius Gnanaraj Solomon & Raja Singh Rassiah & Claudia Masselli, 2022. "A Review on Geothermal Renewable Energy Systems for Eco-Friendly Air-Conditioning," Energies, MDPI, vol. 15(15), pages 1-17, July.
    6. Dong-Seok Lee & Jae-Hun Jo & Sung-Han Koo & Byung-Yun Lee, 2015. "Development of Climate Indices Using Local Weather Data for Shading Design," Sustainability, MDPI, vol. 7(2), pages 1-16, February.
    7. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "The Energy Performances of a Ground-to-Air Heat Exchanger: A Comparison Among Köppen Climatic Areas," Energies, MDPI, vol. 13(11), pages 1-25, June.
    8. Serafín Alonso & Antonio Morán & Miguel Ángel Prada & Perfecto Reguera & Juan José Fuertes & Manuel Domínguez, 2019. "A Data-Driven Approach for Enhancing the Efficiency in Chiller Plants: A Hospital Case Study," Energies, MDPI, vol. 12(5), pages 1-28, March.
    9. Jordan Higgins & Aditya Ramnarayan & Roxana Family & Michael Ohadi, 2024. "Analysis of Energy Efficiency Opportunities for a Public Transportation Maintenance Facility—A Case Study," Energies, MDPI, vol. 17(8), pages 1-20, April.
    10. Shin, Hakjong & Kwak, Younghoon & Jo, Seng-Kyoun & Kim, Se-Han & Huh, Jung-Ho, 2023. "Development of an optimal mechanical ventilation system control strategy based on weather forecasting data for outdoor air cooling in livestock housing," Energy, Elsevier, vol. 268(C).
    11. Zhonghua Zhang & Lingjie Zeng & Huixian Shi & Hua Liu & Wenjun Yin & Haowen Shen & Libin Yang & Jun Gao & Lina Wang & Yalei Zhang & Xuefei Zhou, 2021. "CFD Study on the Ventilation Effectiveness in a Public Toilet under Three Ventilation Methods," Energies, MDPI, vol. 14(24), pages 1-25, December.
    12. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "HVAC Energy Saving Strategies for Public Buildings Based on Heat Pumps and Demand Controlled Ventilation," Energies, MDPI, vol. 14(17), pages 1-20, September.
    13. Du, Zhimin & Jin, Xinqiao & Fang, Xing & Fan, Bo, 2016. "A dual-benchmark based energy analysis method to evaluate control strategies for building HVAC systems," Applied Energy, Elsevier, vol. 183(C), pages 700-714.
    14. Radhakrishnan, Nikitha & Su, Yang & Su, Rong & Poolla, Kameshwar, 2016. "Token based scheduling for energy management in building HVAC systems," Applied Energy, Elsevier, vol. 173(C), pages 67-79.
    15. Adriana Greco & Claudia Masselli, 2020. "The Optimization of the Thermal Performances of an Earth to Air Heat Exchanger for an Air Conditioning System: A Numerical Study," Energies, MDPI, vol. 13(23), pages 1-25, December.
    16. Baldi, Simone & Zhang, Fan & Le Quang, Thuan & Endel, Petr & Holub, Ondrej, 2019. "Passive versus active learning in operation and adaptive maintenance of Heating, Ventilation, and Air Conditioning," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    17. Zhao, Xiaoqing & Wei, An & Zou, Shaokun & Dong, Qichang & Qi, Jiacheng & Song, Ye & Shi, Long, 2024. "Controlling naturally ventilated double-skin façade to reduce energy consumption in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    18. Hwang, Jun Kwon & Yun, Geun Young & Lee, Sukho & Seo, Hyeongjoon & Santamouris, Mat, 2020. "Using deep learning approaches with variable selection process to predict the energy performance of a heating and cooling system," Renewable Energy, Elsevier, vol. 149(C), pages 1227-1245.
    19. Davis, Matthew & Ahiduzzaman, Md. & Kumar, Amit, 2018. "How will Canada’s greenhouse gas emissions change by 2050? A disaggregated analysis of past and future greenhouse gas emissions using bottom-up energy modelling and Sankey diagrams," Applied Energy, Elsevier, vol. 220(C), pages 754-786.
    20. Zhang, Xinghui & Yang, Jiaojiao & Fan, Yi & Zhao, Xudong & Yan, Ruimiao & Zhao, Juan & Myers, Steve, 2020. "Experimental and analytic study of a hybrid solar/biomass rural heating system," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:9:p:883-:d:77241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.