IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8474-d427970.html
   My bibliography  Save this article

Summertime Overheating Risk Assessment of a Flexible Plug-In Modular Unit in Luxembourg

Author

Listed:
  • Michaël Rakotonjanahary

    (Faculty of Science, Technology, and Medicine, Campus Kirchberg, University of Luxembourg, 1359 Luxembourg, Luxembourg)

  • Frank Scholzen

    (Faculty of Science, Technology, and Medicine, Campus Kirchberg, University of Luxembourg, 1359 Luxembourg, Luxembourg)

  • Daniele Waldmann

    (Faculty of Science, Technology, and Medicine, Campus Belval, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg)

Abstract

Modular buildings offer faster construction process, provide better construction quality, allow reducing construction waste and are potentially flexible. Frames of modular units can be made of metal, timber, concrete or mixed materials but lightweight structures do not always allow erecting high-rise buildings and generally present a higher risk of overheating and/or overcooling. To reconcile these pros and cons, a typology of modular building called Slab was designed by a group of architects. The building is composed on the one hand of a permanent concrete structure named shelf-structure and on the other hand of several flexible removable timber modular units, also known as modules. The shelf-structure will host the common utility rooms and will serve as docking infrastructure for the housing modules. To provide high flexibility, the Slab building was designed to adapt to any orientation and location in Luxembourg. An energy concept and a HVAC systems design has been developed for the Slab building. Furthermore, a two-fold sustainability analysis was carried out. The first part of the analysis regards the determination of the minimum required wall thicknesses of the modules in accordance with Luxembourgish regulatory requirements, although the current regulation does not yet consider the Slab building typology. The second part, which is the subject of this paper, is thermal comfort assessment, more precisely, summertime overheating risk assessment of these modules, in compliance with Luxembourgish standard. In this regard, dynamic thermal simulations have been realized on two module variants; the first fulfills the passive house requirements, and the second—the current requirements for building permit application, which in principle corresponds to low energy house requirements. Simulations showed that with adequate solar shading and reinforced natural ventilation by window opening, overheating risk could be avoided for the normal residential use scenario for both module variants.

Suggested Citation

  • Michaël Rakotonjanahary & Frank Scholzen & Daniele Waldmann, 2020. "Summertime Overheating Risk Assessment of a Flexible Plug-In Modular Unit in Luxembourg," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8474-:d:427970
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8474/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8474/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Košir, Mitja & Iglič, Nataša & Kunič, Roman, 2018. "Optimisation of heating, cooling and lighting energy performance of modular buildings in respect to location’s climatic specifics," Renewable Energy, Elsevier, vol. 129(PA), pages 527-539.
    2. Dong-Seok Lee & Sung-Han Koo & Yoon-Bok Seong & Jae-Hun Jo, 2016. "Evaluating Thermal and Lighting Energy Performance of Shading Devices on Kinetic Façades," Sustainability, MDPI, vol. 8(9), pages 1-18, September.
    3. Marielle Ferreira Silva & Laddu Bhagya Jayasinghe & Daniele Waldmann & Florian Hertweck, 2020. "Recyclable Architecture: Prefabricated and Recyclable Typologies," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    4. Carlos Ulloa & María Elena Arce & Guillermo Rey & José Luis Míguez & José Hernández, 2017. "Recycling COR-TEN ® Sea Containers into Service Modules for Military Applications: Thermal Analysis," Energies, MDPI, vol. 10(6), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luigi Maffei & Antonio Ciervo & Achille Perrotta & Massimiliano Masullo & Antonio Rosato, 2023. "Innovative Energy-Efficient Prefabricated Movable Buildings for Smart/Co-Working: Performance Assessment upon Varying Building Configurations," Sustainability, MDPI, vol. 15(12), pages 1-37, June.
    2. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    3. Suzana Domjan & Sašo Medved & Boštjan Černe & Ciril Arkar, 2019. "Fast Modelling of nZEB Metrics of Office Buildings Built with Advanced Glass and BIPV Facade Structures," Energies, MDPI, vol. 12(16), pages 1-18, August.
    4. Stephan Peter & Matthias Schirmer & Philippe Lathan & Georg Stimpfl & Bashar Ibrahim, 2022. "Performance Analysis of a Solar-Powered Multi-Purpose Supply Container," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
    5. Alasdair Reid, 2023. "Closing the Affordable Housing Gap: Identifying the Barriers Hindering the Sustainable Design and Construction of Affordable Homes," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
    6. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    7. Volkan Ezcan & Jack Steven Goulding, 2022. "Offsite Sustainability—Disentangling the Rhetoric through Informed Mindset Change," Sustainability, MDPI, vol. 14(8), pages 1-27, April.
    8. Hwang Yi & Mi-Jin Kim & Yuri Kim & Sun-Sook Kim & Kyu-In Lee, 2019. "Rapid Simulation of Optimally Responsive Façade during Schematic Design Phases: Use of a New Hybrid Metaheuristic Algorithm," Sustainability, MDPI, vol. 11(9), pages 1-28, May.
    9. Cansu Iraz Seyrek & Barbara Widera & Agata Woźniczka, 2021. "Sustainability-Related Parameters and Decision Support Tools for Kinetic Green Façades," Sustainability, MDPI, vol. 13(18), pages 1-16, September.
    10. Beungyong Park & Jinkyun Cho & Yongdae Jeong, 2019. "Thermal Performance Assessment of Flexible Modular Housing Units for Energy Independence Following Disasters," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    11. Graziano Salvalai & Marta Maria Sesana & Diletta Brutti & Marco Imperadori, 2020. "Design and Performance Analysis of a Lightweight Flexible nZEB," Sustainability, MDPI, vol. 12(15), pages 1-27, July.
    12. Anan Watcharapongvinij & Apichit Therdyothin, 2020. "Optimum Design of Retail and Wholesale Building for Minimum Energy Consumption and Total Cost," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 489-503.
    13. Anan Watcharapongvinij & Apichit Therdyothin, 2019. "Optimum Design of Retail and Wholesale Building for Minimum Energy Consumption and Total Cost," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 511-524.
    14. Zdankus, T. & Cerneckiene, J. & Jonynas, R. & Stelmokaitis, G. & Fokaides, P.A., 2020. "Experimental investigation of a wind to thermal energy hydraulic system," Renewable Energy, Elsevier, vol. 159(C), pages 140-150.
    15. Su-Ji Choi & Dong-Seok Lee & Jae-Hun Jo, 2017. "Method of Deriving Shaded Fraction According to Shading Movements of Kinetic Façade," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    16. Mazen M. Omer & Rahimi A. Rahman & Saud Almutairi, 2022. "Strategies for Enhancing Construction Waste Recycling: A Usability Analysis," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    17. Xie, Xing & Xu, Bin & Fei, Yue & Chen, Xing-ni & Pei, Gang & Ji, Jie, 2024. "Passive energy-saving design strategy and realization on high window-wall ratio buildings in subtropical regions," Renewable Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8474-:d:427970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.