IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i7p629-d73336.html
   My bibliography  Save this article

Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study

Author

Listed:
  • Simone Pascuzzi

    (Department of Agricultural and Environmental Science (DiSAAT), University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy)

  • Alexandros Sotirios Anifantis

    (Department of Agricultural and Environmental Science (DiSAAT), University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy)

  • Ileana Blanco

    (Department of Agricultural and Environmental Science (DiSAAT), University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy)

  • Giacomo Scarascia Mugnozza

    (Department of Agricultural and Environmental Science (DiSAAT), University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy)

Abstract

A greenhouse containing an integrated system of photovoltaic panels, a water electrolyzer, fuel cells and a geothermal heat pump was set up to investigate suitable solutions for a power system based on solar energy and hydrogen, feeding a self-sufficient, geothermal-heated greenhouse. The electricity produced by the photovoltaic source supplies the electrolyzer; the manufactured hydrogen gas is held in a pressure tank. In these systems, the electrolyzer is a crucial component; the technical challenge is to make it work regularly despite the irregularity of the solar source. The focus of this paper is to study the performance and the real energy efficiency of the electrolyzer, analyzing its operational data collected under different operating conditions affected by the changeable solar radiant energy characterizing the site where the experimental plant was located. The analysis of the measured values allowed evaluation of its suitability for the agricultural requirements such as greenhouse heating. On the strength of the obtained result, a new layout of the battery bank has been designed and exemplified to improve the performance of the electrolyzer. The evaluations resulting from this case study may have a genuine value, therefore assisting in further studies to better understand these devices and their associated technologies.

Suggested Citation

  • Simone Pascuzzi & Alexandros Sotirios Anifantis & Ileana Blanco & Giacomo Scarascia Mugnozza, 2016. "Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study," Sustainability, MDPI, vol. 8(7), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:629-:d:73336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/7/629/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/7/629/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deshmukh, Sachin S. & Boehm, Robert F., 2008. "Review of modeling details related to renewably powered hydrogen systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2301-2330, December.
    2. Jallouli, Rihab & Krichen, Lotfi, 2012. "Sizing, techno-economic and generation management analysis of a stand alone photovoltaic power unit including storage devices," Energy, Elsevier, vol. 40(1), pages 196-209.
    3. Li, Chun-Hua & Zhu, Xin-Jian & Cao, Guang-Yi & Sui, Sheng & Hu, Ming-Ruo, 2009. "Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology," Renewable Energy, Elsevier, vol. 34(3), pages 815-826.
    4. Ozgener, Onder, 2010. "Use of solar assisted geothermal heat pump and small wind turbine systems for heating agricultural and residential buildings," Energy, Elsevier, vol. 35(1), pages 262-268.
    5. Khan, M.J. & Iqbal, M.T., 2005. "Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland," Renewable Energy, Elsevier, vol. 30(6), pages 835-854.
    6. Adaro, Jorge A. & Galimberti, Pablo D. & Lema, Alba I. & Fasulo, Amílcar & Barral, Jorge R., 1999. "Geothermal contribution to greenhouse heating," Applied Energy, Elsevier, vol. 64(1-4), pages 241-249, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Volodymyr Bulgakov & Simone Pascuzzi & Volodymyr Nadykto & Semjons Ivanovs, 2018. "A Mathematical Model of the Plane-Parallel Movement of an Asymmetric Machine-and-Tractor Aggregate," Agriculture, MDPI, vol. 8(10), pages 1-15, October.
    2. Andrea Colantoni & Danilo Monarca & Vincenzo Laurendi & Mauro Villarini & Filippo Gambella & Massimo Cecchini, 2018. "Smart Machines, Remote Sensing, Precision Farming, Processes, Mechatronic, Materials and Policies for Safety and Health Aspects," Agriculture, MDPI, vol. 8(4), pages 1-11, March.
    3. Anifantis, Alexandros Sotirios & Colantoni, Andrea & Pascuzzi, Simone, 2017. "Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating," Renewable Energy, Elsevier, vol. 103(C), pages 115-127.
    4. Emanuele Cerruto & Giuseppe Manetto & Francesco Santoro & Simone Pascuzzi, 2018. "Operator Dermal Exposure to Pesticides in Tomato and Strawberry Greenhouses from Hand-Held Sprayers," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    5. Damien Guilbert & Gianpaolo Vitale, 2020. "Improved Hydrogen-Production-Based Power Management Control of a Wind Turbine Conversion System Coupled with Multistack Proton Exchange Membrane Electrolyzers," Energies, MDPI, vol. 13(5), pages 1-18, March.
    6. Arkadiusz Małek & Agnieszka Dudziak & Jacek Caban & Monika Stoma, 2024. "Strategic Model for Yellow Hydrogen Production Using the Metalog Family of Probability Distributions," Energies, MDPI, vol. 17(10), pages 1-24, May.
    7. Volodymyr Bulgakov & Simone Pascuzzi & Francesco Santoro & Alexandros Sotirios Anifantis, 2018. "Mathematical Model of the Plane-Parallel Movement of the Self-Propelled Root-Harvesting Machine," Sustainability, MDPI, vol. 10(10), pages 1-11, October.
    8. Panah, Payam Ghaebi & Bornapour, Mosayeb & Hemmati, Reza & Guerrero, Josep M., 2021. "Charging station Stochastic Programming for Hydrogen/Battery Electric Buses using Multi-Criteria Crow Search Algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Razzaqul Ahshan, 2021. "Potential and Economic Analysis of Solar-to-Hydrogen Production in the Sultanate of Oman," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    10. Squadrito, G. & Nicita, A. & Maggio, G., 2021. "A size-dependent financial evaluation of green hydrogen-oxygen co-production," Renewable Energy, Elsevier, vol. 163(C), pages 2165-2177.
    11. Ioan Aschilean & Gabriel Rasoi & Maria Simona Raboaca & Constantin Filote & Mihai Culcer, 2018. "Design and Concept of an Energy System Based on Renewable Sources for Greenhouse Sustainable Agriculture," Energies, MDPI, vol. 11(5), pages 1-12, May.
    12. Rapha Julysses Perez & Alan C. Brent & James Hinkley, 2021. "Assessment of the Potential for Green Hydrogen Fuelling of Very Heavy Vehicles in New Zealand," Energies, MDPI, vol. 14(9), pages 1-12, May.
    13. Chrysanthos Maraveas & Christos-Spyridon Karavas & Dimitrios Loukatos & Thomas Bartzanas & Konstantinos G. Arvanitis & Eleni Symeonaki, 2023. "Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions," Agriculture, MDPI, vol. 13(7), pages 1-46, July.
    14. Nguyen, Nhut Tien & Matsuhashi, Ryuji & Vo, Tran Thi Bich Chau, 2021. "A design on sustainable hybrid energy systems by multi-objective optimization for aquaculture industry," Renewable Energy, Elsevier, vol. 163(C), pages 1878-1894.
    15. Lorién Gracia & Pedro Casero & Cyril Bourasseau & Alexandre Chabert, 2018. "Use of Hydrogen in Off-Grid Locations, a Techno-Economic Assessment," Energies, MDPI, vol. 11(11), pages 1-16, November.
    16. Abo-Elyousr, Farag K. & Guerrero, Josep M. & Ramadan, Haitham S., 2021. "Prospective hydrogen-based microgrid systems for optimal leverage via metaheuristic approaches," Applied Energy, Elsevier, vol. 300(C).
    17. Alexandros Sotirios Anifantis & Andrea Colantoni & Simone Pascuzzi & Francesco Santoro, 2018. "Photovoltaic and Hydrogen Plant Integrated with a Gas Heat Pump for Greenhouse Heating: A Mathematical Study," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    18. Muhammad Faizan Tahir & Haoyong Chen & Muhammad Sufyan Javed & Irfan Jameel & Asad Khan & Saifullah Adnan, 2019. "Integration of Different Individual Heating Scenarios and Energy Storages into Hybrid Energy System Model of China for 2030," Energies, MDPI, vol. 12(11), pages 1-20, May.
    19. Abdoulaye Ballo & Koffi Kouakou Valentin & Bruno Korgo & Kehinde Olufunso Ogunjobi & Solomon Nwabueze Agbo & Daouda Kone & Moumini Savadogo, 2022. "Law and Policy Review on Green Hydrogen Potential in ECOWAS Countries," Energies, MDPI, vol. 15(7), pages 1-14, March.
    20. Tao Huang & Hongqiang Li & Guoqiang Zhang & Feng Xu, 2020. "Experimental Study on Biomass Heating System in the Greenhouse: A Case Study in Xiangtan, China," Sustainability, MDPI, vol. 12(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khiareddine, Abla & Ben Salah, Chokri & Rekioua, Djamila & Mimouni, Mohamed Faouzi, 2018. "Sizing methodology for hybrid photovoltaic /wind/ hydrogen/battery integrated to energy management strategy for pumping system," Energy, Elsevier, vol. 153(C), pages 743-762.
    2. Anifantis, Alexandros Sotirios & Colantoni, Andrea & Pascuzzi, Simone, 2017. "Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating," Renewable Energy, Elsevier, vol. 103(C), pages 115-127.
    3. Bouabdallah, A. & Olivier, J.C. & Bourguet, S. & Machmoum, M. & Schaeffer, E., 2015. "Safe sizing methodology applied to a standalone photovoltaic system," Renewable Energy, Elsevier, vol. 80(C), pages 266-274.
    4. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    5. Pal, Pikaso & Mukherjee, V., 2021. "Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: An investigation based on techno-economic feasibility assessment for the application of end-user load demand in N," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
    7. Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
    8. Janghorban Esfahani, Iman & Lee, SeungChul & Yoo, ChangKyoo, 2015. "Extended-power pinch analysis (EPoPA) for integration of renewable energy systems with battery/hydrogen storages," Renewable Energy, Elsevier, vol. 80(C), pages 1-14.
    9. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    10. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    11. Ibrahim, Ibrahim Anwar & Khatib, Tamer & Mohamed, Azah, 2017. "Optimal sizing of a standalone photovoltaic system for remote housing electrification using numerical algorithm and improved system models," Energy, Elsevier, vol. 126(C), pages 392-403.
    12. Lacko, R. & Drobnič, B. & Mori, M. & Sekavčnik, M. & Vidmar, M., 2014. "Stand-alone renewable combined heat and power system with hydrogen technologies for household application," Energy, Elsevier, vol. 77(C), pages 164-170.
    13. Abdelshafy, Alaaeldin M. & Jurasz, Jakub & Hassan, Hamdy & Mohamed, Abdelfatah M., 2020. "Optimized energy management strategy for grid connected double storage (pumped storage-battery) system powered by renewable energy resources," Energy, Elsevier, vol. 192(C).
    14. Burhan, Muhammad & Chua, Kian Jon Ernest & Ng, Kim Choon, 2016. "Sunlight to hydrogen conversion: Design optimization and energy management of concentrated photovoltaic (CPV-Hydrogen) system using micro genetic algorithm," Energy, Elsevier, vol. 99(C), pages 115-128.
    15. Karakoulidis, K. & Mavridis, K. & Bandekas, D.V. & Adoniadis, P. & Potolias, C. & Vordos, N., 2011. "Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system," Renewable Energy, Elsevier, vol. 36(8), pages 2238-2244.
    16. Amutha, W. Margaret & Rajini, V., 2016. "Cost benefit and technical analysis of rural electrification alternatives in southern India using HOMER," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 236-246.
    17. Selin Kocaman, Ayse & Abad, Carlos & Troy, Tara J. & Tim Huh, Woonghee & Modi, Vijay, 2016. "A stochastic model for a macroscale hybrid renewable energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 688-703.
    18. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    19. Yasser Maklad, 2014. "Quantification and Costing of Domestic Electricity Generation for Armidale, New South Wales, Australia Utilising Micro Wind Turbines," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 208-219.
    20. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:629-:d:73336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.