IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i2p378-d129719.html
   My bibliography  Save this article

Photovoltaic and Hydrogen Plant Integrated with a Gas Heat Pump for Greenhouse Heating: A Mathematical Study

Author

Listed:
  • Alexandros Sotirios Anifantis

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70126 Bari, Italy)

  • Andrea Colantoni

    (Department of Agriculture and Forestry Science, Tuscia University, 01100 Viterbo, Italy)

  • Simone Pascuzzi

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70126 Bari, Italy)

  • Francesco Santoro

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70126 Bari, Italy)

Abstract

Nowadays, the traditional energy sources used for greenhouse heating are fossil fuels such as LPG, diesel and natural gas. The global energy demand will continue to grow and alternative technologies need to be developed in order to improve the sustainability of crop production in protected environments. Innovative solutions are represented by renewable energy plants such as photovoltaic, wind and geothermal integrated systems, however, these technologies need to be connected to the power grid in order to store the energy produced. On agricultural land, power grids are not widespread and stand-alone renewable energy systems should be investigated especially for greenhouse applications. The aim of this research is to analyze, by means of a mathematical model, the energy efficiency of a photovoltaic (8.2 kW), hydrogen (2.5 kW) and ground source gas heat pump (2.2 kW) integrated in a stand-alone system used for heating an experimental greenhouse tunnel (48 m 2 ) during the winter season. A yearlong energy performance analysis was conducted for three different types of greenhouse cover materials, a single layer polyethylene film, an air inflated-double layer polyethylene film, and a double acrylic or polycarbonate. The results of one year showed that the integrated system had a total energy efficiency of 14.6%. Starting from the electric energy supplied by the photovoltaic array, the total efficiency of the hydrogen and ground source gas heat pump system was 112% if the coefficient of the performance of the heat pump is equal to 5. The heating system increased the greenhouse air temperatures by 3–9 °C with respect to the external air temperatures, depending on the greenhouse cover material used.

Suggested Citation

  • Alexandros Sotirios Anifantis & Andrea Colantoni & Simone Pascuzzi & Francesco Santoro, 2018. "Photovoltaic and Hydrogen Plant Integrated with a Gas Heat Pump for Greenhouse Heating: A Mathematical Study," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:378-:d:129719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/2/378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/2/378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simone Pascuzzi & Francesco Santoro, 2017. "Analysis of the Almond Harvesting and Hulling Mechanization Process: A Case Study," Agriculture, MDPI, vol. 7(12), pages 1-9, December.
    2. Simone Pascuzzi & Alexandros Sotirios Anifantis & Ileana Blanco & Giacomo Scarascia Mugnozza, 2016. "Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study," Sustainability, MDPI, vol. 8(7), pages 1-15, July.
    3. Anifantis, Alexandros Sotirios & Colantoni, Andrea & Pascuzzi, Simone, 2017. "Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating," Renewable Energy, Elsevier, vol. 103(C), pages 115-127.
    4. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    5. Simone Pascuzzi & Francesco Santoro, 2017. "Analysis of Possible Noise Reduction Arrangements inside Olive Oil Mills: A Case Study," Agriculture, MDPI, vol. 7(10), pages 1-12, October.
    6. Trypanagnostopoulos, G. & Kavga, A. & Souliotis, Μ. & Tripanagnostopoulos, Y., 2017. "Greenhouse performance results for roof installed photovoltaics," Renewable Energy, Elsevier, vol. 111(C), pages 724-731.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Colantoni & Danilo Monarca & Vincenzo Laurendi & Mauro Villarini & Filippo Gambella & Massimo Cecchini, 2018. "Smart Machines, Remote Sensing, Precision Farming, Processes, Mechatronic, Materials and Policies for Safety and Health Aspects," Agriculture, MDPI, vol. 8(4), pages 1-11, March.
    2. Volodymyr Bulgakov & Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2019. "Oscillations Analysis of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 12(14), pages 1-14, July.
    3. Emanuele Cerruto & Giuseppe Manetto & Francesco Santoro & Simone Pascuzzi, 2018. "Operator Dermal Exposure to Pesticides in Tomato and Strawberry Greenhouses from Hand-Held Sprayers," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    4. Oleksandra Shepel & Jonas Matijošius & Alfredas Rimkus & Olga Orynycz & Karol Tucki & Antoni Świć, 2022. "Combustion, Ecological, and Energetic Indicators for Mixtures of Hydrotreated Vegetable Oil (HVO) with Duck Fat Applied as Fuel in a Compression Ignition Engine," Energies, MDPI, vol. 15(21), pages 1-24, October.
    5. Chiara Terrosi & Sonia Cacini & Gianluca Burchi & Maurizio Cutini & Massimo Brambilla & Carlo Bisaglia & Daniele Massa & Marco Fedrizzi, 2020. "Evaluation of Compressor Heat Pump for Root Zone Heating as an Alternative Heating Source for Leafy Vegetable Cultivation," Energies, MDPI, vol. 13(3), pages 1-15, February.
    6. Roselli, C. & Diglio, G. & Sasso, M. & Tariello, F., 2019. "A novel energy index to assess the impact of a solar PV-based ground source heat pump on the power grid," Renewable Energy, Elsevier, vol. 143(C), pages 488-500.
    7. Artur Nemś & Magdalena Nemś & Klaudia Świder, 2018. "Analysis of the Possibilities of Using a Heat Pump for Greenhouse Heating in Polish Climatic Conditions—A Case Study," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    8. Karol Tucki & Olga Orynycz & Remigiusz Mruk & Antoni Świć & Katarzyna Botwińska, 2019. "Modeling of Biofuel’s Emissivity for Fuel Choice Management," Sustainability, MDPI, vol. 11(23), pages 1-22, December.
    9. Artur Kraszkiewicz & Artur Przywara & Alexandros Sotirios Anifantis, 2020. "Impact of Ignition Technique on Pollutants Emission during the Combustion of Selected Solid Biofuels," Energies, MDPI, vol. 13(10), pages 1-13, May.
    10. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Influence of Different Biofuels on the Efficiency of Gas Turbine Cycles for Prosumer and Distributed Energy Power Plants," Energies, MDPI, vol. 12(16), pages 1-21, August.
    11. James Bambara & Andreas K. Athienitis & Ursula Eicker, 2021. "Decarbonizing Local Mobility and Greenhouse Agriculture through Residential Building Energy Upgrades: A Case Study for Québec," Energies, MDPI, vol. 14(20), pages 1-31, October.
    12. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    13. Eva Cudlínová & Valny Giacomelli Sobrinho & Miloslav Lapka & Luca Salvati, 2020. "New Forms of Land Grabbing Due to the Bioeconomy: The Case of Brazil," Sustainability, MDPI, vol. 12(8), pages 1-15, April.
    14. Andrea Colantoni & Rodolfo Picchio & Alvaro Marucci & Elena Di Mattia & Valerio Cristofori & Fabio Recanatesi & Mauro Villarini & Danilo Monarca & Massimo Cecchini, 2020. "WP3—Innovation in Agriculture and Forestry Sector for Energetic Sustainability," Energies, MDPI, vol. 13(22), pages 1-7, November.
    15. Tao Huang & Hongqiang Li & Guoqiang Zhang & Feng Xu, 2020. "Experimental Study on Biomass Heating System in the Greenhouse: A Case Study in Xiangtan, China," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    16. Arrigo Salvatore Guerrieri & Alexandros Sotirios Anifantis & Francesco Santoro & Simone Pascuzzi, 2019. "Study of a Large Square Baler with Innovative Technological Systems that Optimize the Baling Effectiveness," Agriculture, MDPI, vol. 9(5), pages 1-8, April.
    17. Istvan Vokony, 2021. "Hybrid Hydrogen–PV–e-Mobility Industrial Energy Community Concept—A Technology Feasibility Study," Clean Technol., MDPI, vol. 3(4), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Colantoni & Danilo Monarca & Vincenzo Laurendi & Mauro Villarini & Filippo Gambella & Massimo Cecchini, 2018. "Smart Machines, Remote Sensing, Precision Farming, Processes, Mechatronic, Materials and Policies for Safety and Health Aspects," Agriculture, MDPI, vol. 8(4), pages 1-11, March.
    2. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    3. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    5. Volodymyr Bulgakov & Simone Pascuzzi & Francesco Santoro & Alexandros Sotirios Anifantis, 2018. "Mathematical Model of the Plane-Parallel Movement of the Self-Propelled Root-Harvesting Machine," Sustainability, MDPI, vol. 10(10), pages 1-11, October.
    6. Hassanien, Reda Hassanien Emam & Li, Ming & Yin, Fang, 2018. "The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production," Renewable Energy, Elsevier, vol. 121(C), pages 377-388.
    7. Cossu, Marco & Cossu, Andrea & Deligios, Paola A. & Ledda, Luigi & Li, Zhi & Fatnassi, Hicham & Poncet, Christine & Yano, Akira, 2018. "Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 822-834.
    8. Zhi Li & Akira Yano & Marco Cossu & Hidekazu Yoshioka & Ichiro Kita & Yasuomi Ibaraki, 2018. "Electrical Energy Producing Greenhouse Shading System with a Semi-Transparent Photovoltaic Blind Based on Micro-Spherical Solar Cells," Energies, MDPI, vol. 11(7), pages 1-23, June.
    9. Emanuele Cerruto & Giuseppe Manetto & Francesco Santoro & Simone Pascuzzi, 2018. "Operator Dermal Exposure to Pesticides in Tomato and Strawberry Greenhouses from Hand-Held Sprayers," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    10. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Francesco Santoro & Alexandros Sotirios Anifantis & Ievhen Ihnatiev, 2020. "Performance Assessment of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 13(14), pages 1-12, July.
    11. Francesco Santoro & Alexandros Sotirios Anifantis & Giuseppe Ruggiero & Vladislav Zavadskiy & Simone Pascuzzi, 2019. "Lightning Protection Systems Suitable for Stables: A Case Study," Agriculture, MDPI, vol. 9(4), pages 1-7, April.
    12. Raúl Aroca-Delgado & José Pérez-Alonso & Ángel Jesús Callejón-Ferre & Borja Velázquez-Martí, 2018. "Compatibility between Crops and Solar Panels: An Overview from Shading Systems," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    13. Chrysanthos Maraveas & Christos-Spyridon Karavas & Dimitrios Loukatos & Thomas Bartzanas & Konstantinos G. Arvanitis & Eleni Symeonaki, 2023. "Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions," Agriculture, MDPI, vol. 13(7), pages 1-46, July.
    14. Ilaria Zambon & Massimo Cecchini & Enrico Maria Mosconi & Andrea Colantoni, 2019. "Revolutionizing Towards Sustainable Agricultural Systems: The Role of Energy," Energies, MDPI, vol. 12(19), pages 1-11, September.
    15. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    16. Farfan, Javier & Lohrmann, Alena & Breyer, Christian, 2019. "Integration of greenhouse agriculture to the energy infrastructure as an alimentary solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 368-377.
    17. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    18. Zhang, Kai & Yu, Jihua & Ren, Yan, 2022. "Research on the size optimization of photovoltaic panels and integrated application with Chinese solar greenhouses," Renewable Energy, Elsevier, vol. 182(C), pages 536-551.
    19. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    20. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:378-:d:129719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.