IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v5y2013i12p5020-5033d30834.html
   My bibliography  Save this article

Environmental and Financial Evaluation of Passenger Vehicle Technologies in Belgium

Author

Listed:
  • Maarten Messagie

    (Mobility and Automotive Technology Research Center (MOBI), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium)

  • Kenneth Lebeau

    (Mobility and Automotive Technology Research Center (MOBI), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium)

  • Thierry Coosemans

    (Mobility and Automotive Technology Research Center (MOBI), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium)

  • Cathy Macharis

    (Mobility and Automotive Technology Research Center (MOBI), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium)

  • Joeri Van Mierlo

    (Mobility and Automotive Technology Research Center (MOBI), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium)

Abstract

Vehicles with alternative drive trains are regarded as a promising substitute for conventional cars, considering the growing concern about oil depletion and the environmental impact of our transportation system. However, “clean” technologies will only be viable when they are cost-efficient. In this paper, the environmental impacts and the financial costs of different vehicle technologies are calculated for an average Belgian driver. Environmentally friendly vehicles are compared with conventional petrol and diesel vehicles. The assessments are done from a life cycle perspective. The effect on human health, resources and ecosystems is considered when calculating the environmental impact. The total cost of ownership (TCO) model includes the purchase price, registration and road taxes, insurance, fuel or electricity cost, maintenance, tires replacement, technical control, battery leasing and battery replacement. In the presented analysis different vehicle technologies and fuels are compared (petrol, diesel, hybrid electric vehicles (HEVs), battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs)) on their level of environmental impact and cost per kilometer. The analysis shows a lower environmental impact for electric vehicles. However, electric vehicles have a higher total cost of ownership compared to conventional vehicles, even though the fuel operating costs are significantly lower. The purchase cost of electric vehicles is highly linked to the size of the battery pack, and not to the size of the electric vehicle. This explains the relative high cost for the electric city cars and the comparable cost for the medium and premium cars.

Suggested Citation

  • Maarten Messagie & Kenneth Lebeau & Thierry Coosemans & Cathy Macharis & Joeri Van Mierlo, 2013. "Environmental and Financial Evaluation of Passenger Vehicle Technologies in Belgium," Sustainability, MDPI, vol. 5(12), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:5:y:2013:i:12:p:5020-5033:d:30834
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/5/12/5020/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/5/12/5020/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elisabeth Windisch, 2011. "The uptake of electric vehicles in the Paris region: A financial analysis of total costs of ownership," Post-Print hal-00675929, HAL.
    2. Goedecke, Martin & Therdthianwong, Supaporn & Gheewala, Shabbir H., 2007. "Life cycle cost analysis of alternative vehicles and fuels in Thailand," Energy Policy, Elsevier, vol. 35(6), pages 3236-3246, June.
    3. Werber, Mathew & Fischer, Michael & Schwartz, Peter V., 2009. "Batteries: Lower cost than gasoline?," Energy Policy, Elsevier, vol. 37(7), pages 2465-2468, July.
    4. Anthony Halog & Yosef Manik, 2011. "Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 3(2), pages 1-31, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier Sanfélix & Cristina De la Rúa & Jannick Hoejrup Schmidt & Maarten Messagie & Joeri Van Mierlo, 2016. "Environmental and Economic Performance of an Li-Ion Battery Pack: A Multiregional Input-Output Approach," Energies, MDPI, vol. 9(8), pages 1-15, July.
    2. Cedric De Cauwer & Joeri Van Mierlo & Thierry Coosemans, 2015. "Energy Consumption Prediction for Electric Vehicles Based on Real-World Data," Energies, MDPI, vol. 8(8), pages 1-21, August.
    3. Tomáš Formánek & Radek Tahal, 2020. "Socio-Demographic Aspects Affecting Individual Stances towards Electric and Hybrid Vehicles in the Czech Republic," Central European Business Review, Prague University of Economics and Business, vol. 2020(2), pages 78-93.
    4. Manuel Herrador & Alexandre Carvalho & Francisco R. Feito, 2015. "An Incentive-Based Solution of Sustainable Mobility for Economic Growth and CO 2 Emissions Reduction," Sustainability, MDPI, vol. 7(5), pages 1-30, May.
    5. Celalettin Yuce & Fatih Karpat & Nurettin Yavuz & Gökhan Sendeniz, 2014. "A Case Study: Designing for Sustainability and Reliability in an Automotive Seat Structure," Sustainability, MDPI, vol. 6(7), pages 1-24, July.
    6. Sousa, Nuno & Almeida, Arminda & Coutinho-Rodrigues, João, 2020. "A multicriteria methodology for estimating consumer acceptance of alternative powertrain technologies," Transport Policy, Elsevier, vol. 85(C), pages 18-32.
    7. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurence Turcksin & Olivier Mairesse & Cathy Macharis & Joeri Van Mierlo, 2013. "Encouraging Environmentally Friendlier Cars via Fiscal Measures: General Methodology and Application to Belgium," Energies, MDPI, vol. 6(1), pages 1-21, January.
    2. Paul Ofei-Manu & Satoshi Shimano, 2012. "In Transition towards Sustainability: Bridging the Business and Education Sectors of Regional Centre of Expertise Greater Sendai Using Education for Sustainable Development-Based Social Learning," Sustainability, MDPI, vol. 4(7), pages 1-26, July.
    3. István Árpád & Judit T. Kiss & Gábor Bellér & Dénes Kocsis, 2021. "Sustainability Investigation of Vehicles’ CO 2 Emission in Hungary," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    4. Svjetlana Janković Šoja & Ana Anokić & Dana Bucalo Jelić & Radojka Maletić, 2016. "Ranking EU Countries According to Their Level of Success in Achieving the Objectives of the Sustainable Development Strategy," Sustainability, MDPI, vol. 8(4), pages 1-10, March.
    5. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    6. Bell, David R. & Silalertruksa, Thapat & Gheewala, Shabbir H. & Kamens, Richard, 2011. "The net cost of biofuels in Thailand--An economic analysis," Energy Policy, Elsevier, vol. 39(2), pages 834-843, February.
    7. Damo, U.M. & Ferrari, M.L. & Turan, A. & Massardo, A.F., 2019. "Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy," Energy, Elsevier, vol. 168(C), pages 235-246.
    8. Jiarui Liu & Azusa Oita & Kentaro Hayashi & Kazuyo Matsubae, 2022. "Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint," Sustainability, MDPI, vol. 14(2), pages 1-18, January.
    9. Eleni Iacovidou & Jonathan Busch & John N. Hahladakis & Helen Baxter & Kok Siew Ng & Ben M. J. Herbert, 2017. "A Parameter Selection Framework for Sustainability Assessment," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    10. Man Yu & Anthony Halog, 2015. "Solar Photovoltaic Development in Australia—A Life Cycle Sustainability Assessment Study," Sustainability, MDPI, vol. 7(2), pages 1-35, January.
    11. al Irsyad, M. Indra & Halog, Anthony & Nepal, Rabindra, 2018. "Estimating the impacts of financing support policies towards photovoltaic market in Indonesia: A social-energy-economy-environment (SE3) model simulation," Working Papers 2018-09, University of Tasmania, Tasmanian School of Business and Economics.
    12. Sumol Sae-Heng Pisitsungkakarn & Pichitpon Neamyou, 2022. "Efficiency of Semi-Automatic Control Ethanol Distillation Using a Vacuum-Tube Parabolic Solar Collector," Energies, MDPI, vol. 15(13), pages 1-18, June.
    13. Asterios Stroumpoulis & Evangelia Kopanaki & George Karaganis, 2021. "Examining the Relationship between Information Systems, Sustainable SCM, and Competitive Advantage," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    14. Ling Wang & Zhongchang Chen & Dalai Ma & Pei Zhao, 2013. "Measuring Carbon Emissions Performance in 123 Countries: Application of Minimum Distance to the Strong Efficiency Frontier Analysis," Sustainability, MDPI, vol. 5(12), pages 1-14, December.
    15. Zeug, Walther & Bezama, Alberto & Thrän, Daniela, 2020. "Towards a holistic and integrated Life Cycle Sustainability Assessment of the bioeconomy: Background on concepts, visions and measurements," UFZ Discussion Papers 7/2020, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    16. Weike Chen & Jing Dong & Chaohua Yan & Hui Dong & Ping Liu, 2021. "What Causes Waterlogging?—Explore the Urban Waterlogging Control Scheme through System Dynamics Simulation," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    17. Viñoles-Cebolla, Rosario & Bastante-Ceca, María José & Capuz-Rizo, Salvador F., 2015. "An integrated method to calculate an automobile's emissions throughout its life cycle," Energy, Elsevier, vol. 83(C), pages 125-136.
    18. Ernst, Christian-Simon & Hackbarth, André & Madlener, Reinhard & Lunz, Benedikt & Uwe Sauer, Dirk & Eckstein, Lutz, 2011. "Battery sizing for serial plug-in hybrid electric vehicles: A model-based economic analysis for Germany," Energy Policy, Elsevier, vol. 39(10), pages 5871-5882, October.
    19. Jaume Freire-Gonz lez & Ignasi Puig-Ventosa, 2015. "Energy Efficiency Policies and the Jevons Paradox," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 69-79.
    20. Nguyen, Thu Lan Thi & Laratte, Bertrand & Guillaume, Bertrand & Hua, Anthony, 2016. "Quantifying environmental externalities with a view to internalizing them in the price of products, using different monetization models," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 13-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:5:y:2013:i:12:p:5020-5033:d:30834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.