IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p1786-d1595527.html
   My bibliography  Save this article

Machine Learning-Based Carbon Emission Predictions and Customized Reduction Strategies for 30 Chinese Provinces

Author

Listed:
  • Siting Hong

    (College of Mathematics and Computer, Guangdong Ocean University, Zhanjiang 524088, China
    These authors contributed equally to this work.)

  • Ting Fu

    (College of Mathematics and Computer, Guangdong Ocean University, Zhanjiang 524088, China
    These authors contributed equally to this work.)

  • Ming Dai

    (College of Mathematics and Computer, Guangdong Ocean University, Zhanjiang 524088, China)

Abstract

With the intensification of global climate change, the discerning identification of carbon emission drivers and the accurate prediction of carbon emissions have emerged as critical components in addressing this urgent issue. This paper collected carbon emission data from Chinese provinces from 1997 to 2021. Machine learning algorithms were applied to identify province characteristics and determine the influence of provincial development types and their drivers. Analysis indicated that technology and energy consumption had the greatest impact on low-carbon potential provinces (LCPPs), economic growth hub provinces (EGHPs), sustainable growth provinces (SGPs), low-carbon technology-driven provinces (LCTDPs), and high-carbon-dependent provinces (HCDPs). Furthermore, a predictive framework incorporating a grey model (GM) alongside a tree-structured parzen estimator (TPE)-optimized support vector regression (SVR) model was employed to forecast carbon emissions for the forthcoming decade. Findings demonstrated that this approach provided substantial improvements in prediction accuracy. Based on these studies, this paper utilized a combination of SHapley Additive exPlanation (SHAP) and political, economic, social, and technological analysis—strengths, weaknesses, opportunities, and threats (PEST-SWOTs) analysis methods to propose customized carbon emission reduction suggestions for the five types of provincial development, such as promoting low-carbon technology, promoting the transformation of the energy structure, and optimizing the industrial structure.

Suggested Citation

  • Siting Hong & Ting Fu & Ming Dai, 2025. "Machine Learning-Based Carbon Emission Predictions and Customized Reduction Strategies for 30 Chinese Provinces," Sustainability, MDPI, vol. 17(5), pages 1-29, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:1786-:d:1595527
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/1786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/1786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang, Kai & Tang, Yiqi & Zhang, Qifeng & Song, Junnian & Wen, Qi & Sun, Huaping & Ji, Chenyang & Xu, Anqi, 2019. "Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces," Applied Energy, Elsevier, vol. 255(C).
    2. Zhao, Jincai & Ji, Guangxing & Yue, YanLin & Lai, Zhizhu & Chen, Yulong & Yang, Dongyang & Yang, Xu & Wang, Zheng, 2019. "Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets," Applied Energy, Elsevier, vol. 235(C), pages 612-624.
    3. Zhu, Bangzhu & Ye, Shunxin & Han, Dong & Wang, Ping & He, Kaijian & Wei, Yi-Ming & Xie, Rui, 2019. "A multiscale analysis for carbon price drivers," Energy Economics, Elsevier, vol. 78(C), pages 202-216.
    4. Xu, Jinghang & Guan, Yuru & Oldfield, Jonathan & Guan, Dabo & Shan, Yuli, 2024. "China carbon emission accounts 2020-2021," Applied Energy, Elsevier, vol. 360(C).
    5. Yu Wang & Ling Dong, 2024. "Research on Carbon Peak Prediction of Various Prefecture-Level Cities in Jiangsu Province Based on Factors Influencing Carbon Emissions," Sustainability, MDPI, vol. 16(16), pages 1-24, August.
    6. Andrée, Bo Pieter Johannes & Chamorro, Andres & Spencer, Phoebe & Koomen, Eric & Dogo, Harun, 2019. "Revisiting the relation between economic growth and the environment; a global assessment of deforestation, pollution and carbon emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Zhong, Weiyi & Zhai, Dengshuai & Xu, Wenran & Gong, Wenwen & Yan, Chao & Zhang, Yang & Qi, Lianyong, 2024. "Accurate and efficient daily carbon emission forecasting based on improved ARIMA," Applied Energy, Elsevier, vol. 376(PA).
    8. Sapnken, Flavian Emmanuel & Hong, Kwon Ryong & Chopkap Noume, Hermann & Tamba, Jean Gaston, 2024. "A grey prediction model optimized by meta-heuristic algorithms and its application in forecasting carbon emissions from road fuel combustion," Energy, Elsevier, vol. 302(C).
    9. Wang, Ailun & Hu, Shuo & Lin, Boqiang, 2021. "Emission abatement cost in China with consideration of technological heterogeneity," Applied Energy, Elsevier, vol. 290(C).
    10. Jinjie Zhao & Lei Kou & Haitao Wang & Xiaoyu He & Zhihui Xiong & Chaoqiang Liu & Hao Cui, 2022. "Carbon Emission Prediction Model and Analysis in the Yellow River Basin Based on a Machine Learning Method," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    11. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    12. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongyang Qiao & Sanmang Wu, 2025. "Decoupling Factor Analysis for Sustainable Development in China’s Four Municipalities Using the Tapio Model," Sustainability, MDPI, vol. 17(6), pages 1-26, March.
    2. Cheng, Xiaobin & Liu, Pengfei & Zhu, Lei, 2024. "The impact of electricity market reform on renewable energy production," Energy Policy, Elsevier, vol. 194(C).
    3. Hua Duan & Bin Li & Qi Wang, 2024. "Static High-Quality Development Efficiency and Its Dynamic Changes for China: A Non-Radial Directional Distance Function and a Metafrontier Non-Radial Malmquist Model," Mathematics, MDPI, vol. 12(15), pages 1-19, July.
    4. Yu Li & Yanjun Zhang & Xiaoyan Li, 2024. "Insight into Carbon Emissions in Economically Developed Regions Based on Land Use Transitions: A Case Study of the Yangtze River Delta, China," Land, MDPI, vol. 13(11), pages 1-21, November.
    5. Ruiqing Yuan & Jiayi Lu & Kai Zhang & Hongying Niu & Ying Long & Xiangyang Xu, 2024. "Study on the Spatial and Temporal Evolution of Building Carbon Emissions and Influencing Factors in the Urban Agglomeration of the Yangtze River Economic Belt," Energies, MDPI, vol. 17(22), pages 1-15, November.
    6. Guangyu Zhai & Tianxu Chu, 2025. "Assessing Carbon Emissions’ Impact on Drought in China’s Arid Regions: Cross-Lagged and Spatial Models," Sustainability, MDPI, vol. 17(5), pages 1-26, February.
    7. Cao, Yue & Guo, Lingling & Qu, Ying & Wang, Liang, 2024. "Possibility and pathways of China's nonferrous metals industry to achieve its carbon peak target before 2030: A new integrated dynamic forecasting model," Energy, Elsevier, vol. 306(C).
    8. Xu, Jie & Lv, Tao & Hou, Xiaoran & Deng, Xu & Li, Na & Liu, Feng, 2022. "Spatiotemporal characteristics and influencing factors of renewable energy production in China: A spatial econometric analysis," Energy Economics, Elsevier, vol. 116(C).
    9. He, Peiming & Tian, Xingyue & Zhang, Jiaming & Yu, Siyu & Li, Shiyu & Lin, Chuan & Chen, Litai & Qian, Lei, 2024. "Can the China–Europe Railway Express reduce carbon dioxide emissions? New mechanism of the manufacturing industry substitution effect," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 1384-1405.
    10. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    11. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    12. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    13. Lin, Fan & Xie, Danyang, 2024. "The Role of R&D for Climate Change Mitigation in China: a Dynamic General Equilibrium Analysis," MPRA Paper 123556, University Library of Munich, Germany.
    14. Meng Guo & Shukai Cai, 2022. "Impact of Green Innovation Efficiency on Carbon Peak: Carbon Neutralization under Environmental Governance Constraints," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    15. Uddin, Gazi Salah & Tang, Ou & Sahamkhadam, Maziar & Taghizadeh-Hesary, Farhad & Yahya, Muhammad & Cerin, Pontus & Rehme, Jakob, 2021. "Analysis of Forecasting Models in an Electricity Market under Volatility," ADBI Working Papers 1212, Asian Development Bank Institute.
    16. Wang, Jianda & Yang, Senmiao & Dong, Kangyin & Nepal, Rabindra, 2024. "Assessing embodied carbon emission and its drivers in China's ICT sector: Multi-regional input-output and structural decomposition analysis," Energy Policy, Elsevier, vol. 186(C).
    17. Bo Zhao & Li Lv & Xiaojuan Luo & Xinzao Huang, 2025. "The Impact of Multidimensional Relational Network Embedding on the Carbon Emission Reductions of Manufacturing Enterprises: From the Mediating and Regulating Roles of Technological Innovation," Sustainability, MDPI, vol. 17(4), pages 1-21, February.
    18. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    19. Chen, Lu & Li, Xin & Liu, Wei & Kang, Xinyu & Zhao, Yifei & Wang, Minxi, 2024. "System dynamics-multiple the objective optimization model for the coordinated development of urban economy-energy-carbon system," Applied Energy, Elsevier, vol. 371(C).
    20. Yaqi Wu & Chen Zhang & Po Yun & Dandan Zhu & Wei Cao & Zulfiqar Ali Wagan, 2021. "Time–frequency analysis of the interaction mechanism between European carbon and crude oil markets," Energy & Environment, , vol. 32(7), pages 1331-1357, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:1786-:d:1595527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.