IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i15p2323-d1442369.html
   My bibliography  Save this article

Static High-Quality Development Efficiency and Its Dynamic Changes for China: A Non-Radial Directional Distance Function and a Metafrontier Non-Radial Malmquist Model

Author

Listed:
  • Hua Duan

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China
    School of Management, Beijing Union University, Beijing 100101, China)

  • Bin Li

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China)

  • Qi Wang

    (School of Management, Beijing Union University, Beijing 100101, China)

Abstract

Improving China’s high-quality development efficiency represents a key lever for the development of new productivity and successfully achieving the “dual carbon” goal. Starting from the nonparametric production theory, this paper addresses the issues of infeasible solutions and technical heterogeneity by employing the total-factor non-radial directional distance function and a metafrontier non-radial Malmquist model. The static total-factor high-quality development efficiency index (THEI) and its dynamic metafrontier non-radial Malmquist high-quality development efficiency index (MNMHEI) are measured for 31 provinces in China from 2008 to 2021. Given that high-quality development efficiency is led and driven by talent, we use labor of different ages and levels of education as four inputs instead of single labor for the study of THEI. The MNMHEI is divided into three indices for measuring efficiency change (EC), best-practice gap change (BPC), and technology gap change (TGC). The empirical results demonstrate that labor with higher education is the main lever of static high-quality development efficiency; there is a 5.3% decrease in China’s dynamic high-quality development efficiency as a whole, and a lack of technological innovation remains a significant constraint on its improvement. The results of the heterogeneity analysis, which classified all provincial areas into low-carbon and high-carbon regions, indicate that the former exhibits a higher dynamic high-quality development efficiency than the latter, which still lacks innovation and technology leadership. It is recommended that the Chinese government consider the talent management system, investments in upgrading technologies, energy conservation, and emission reduction for high-carbon regions to improve their high-quality development efficiency.

Suggested Citation

  • Hua Duan & Bin Li & Qi Wang, 2024. "Static High-Quality Development Efficiency and Its Dynamic Changes for China: A Non-Radial Directional Distance Function and a Metafrontier Non-Radial Malmquist Model," Mathematics, MDPI, vol. 12(15), pages 1-19, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:15:p:2323-:d:1442369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/15/2323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/15/2323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    2. Xu, Jinghang & Guan, Yuru & Oldfield, Jonathan & Guan, Dabo & Shan, Yuli, 2024. "China carbon emission accounts 2020-2021," Applied Energy, Elsevier, vol. 360(C).
    3. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    4. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    5. Zhang, Ning & Kong, Fanbin & Choi, Yongrok, 2014. "Measuring sustainability performance for China: A sequential generalized directional distance function approach," Economic Modelling, Elsevier, vol. 41(C), pages 392-397.
    6. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    7. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zebin Zheng & Wenjun Xiao & Ziye Cheng, 2023. "China’s Green Total Factor Energy Efficiency Assessment Based on Coordinated Reduction in Pollution and Carbon Emission: From the 11th to the 13th Five-Year Plan," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    2. Zhang, Ning & Kong, Fanbin & Choi, Yongrok, 2014. "Measuring sustainability performance for China: A sequential generalized directional distance function approach," Economic Modelling, Elsevier, vol. 41(C), pages 392-397.
    3. Wei Wang & Hualin Xie & Tong Jiang & Daobei Zhang & Xue Xie, 2016. "Measuring the Total-Factor Carbon Emission Performance of Industrial Land Use in China Based on the Global Directional Distance Function and Non-Radial Luenberger Productivity Index," Sustainability, MDPI, vol. 8(4), pages 1-19, April.
    4. Zhang, Ning & Choi, Yongrok, 2013. "A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea," Energy Policy, Elsevier, vol. 62(C), pages 324-332.
    5. Zhang, Ning & Zhou, Peng & Kung, Chih-Chun, 2015. "Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 584-593.
    6. Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
    7. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    8. Wang, H. & Zhou, P. & Zhou, D.Q., 2013. "Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis," Energy Economics, Elsevier, vol. 40(C), pages 795-803.
    9. Xie, Hualin & Wang, Wei & Yang, Zihui & Choi, Yongrok, 2016. "Measuring the sustainable performance of industrial land utilization in major industrial zones of China," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 207-219.
    10. Kejia Chu & Ning Zhang & Zhongfei Chen, 2015. "The Efficiency and Its Determinants for China’s Medical Care System: Some Policy Implications for Northeast Asia," Sustainability, MDPI, vol. 7(10), pages 1-20, October.
    11. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    12. Zhang, Ning & Choi, Yongrok & Wang, Wei, 2019. "Does energy research funding work? Evidence from the Natural Science Foundation of China using TEI@I method," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 369-380.
    13. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    14. Tavana, Madjid & Izadikhah, Mohammad & Toloo, Mehdi & Roostaee, Razieh, 2021. "A new non-radial directional distance model for data envelopment analysis problems with negative and flexible measures," Omega, Elsevier, vol. 102(C).
    15. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    16. Kounetas, Konstantinos & Zervopoulos, Panagiotis D., 2019. "A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps?," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1136-1148.
    17. Lin, Boqiang & Sai, Rockson, 2021. "A multi factor Malmquist CO2emission performance indices: Evidence from Sub Saharan African public thermal power plants," Energy, Elsevier, vol. 223(C).
    18. Lin, Boqiang & Bai, Rui, 2020. "Dynamic energy performance evaluation of Chinese textile industry," Energy, Elsevier, vol. 199(C).
    19. Ning Zhang & Jong-Dae Kim, 2014. "Measuring sustainability by Energy Efficiency Analysis for Korean Power Companies: A Sequential Slacks-Based Efficiency Measure," Sustainability, MDPI, vol. 6(3), pages 1-13, March.
    20. Wei, Chu & Löschel, Andreas & Liu, Bing, 2015. "Energy-saving and emission-abatement potential of Chinese coal-fired power enterprise: A non-parametric analysis," Energy Economics, Elsevier, vol. 49(C), pages 33-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:15:p:2323-:d:1442369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.