IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p929-d1574740.html
   My bibliography  Save this article

Comparative Assessment of Hydrogen and Methanol-Derived Fuel Co-Combustion for Improved Natural Gas Boiler Performance and Sustainability

Author

Listed:
  • Weihong Xu

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Ruhuan Jiang

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Beidong Zhang

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yexin Chen

    (School of Industrial Design, Hubei University of Technology, Wuhan 430068, China)

  • Yankun Jiang

    (School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Faced with a global consensus on net-zero emissions, the use of clean fuels to entirely or substantially replace traditional fuels has emerged as the industry’s primary development direction. Alcohol–hydrogen fuels, primarily based on methanol, are a renewable and sustainable energy source. This research focuses on energy sustainability and presents a boiler fuel blending system that uses methanol–hydrogen combinations. This system uses the boiler’s waste heat to catalytically decompose methanol into a gas mostly consisting of H 2 and CO, which is then co-combusted with the original fuel to improve thermal efficiency and lower emissions. A comparative experimental study considering natural gas (NG) blending with hydrogen and dissociated methanol gas (DMG) was carried out in a small natural gas boiler. The results indicate that, with a controlled mixed fuel flow of 10 m 3 /h and an excess air coefficient of 1.2, a 10% hydrogen blending ratio maximizes the boiler’s thermal efficiency ( η t ), resulting in a 3.5% increase. This ratio also results in a 1% increase in NOx emissions, a 25% decrease in HC emissions, and a 5.66% improvement in the equivalent economics ( e s ). Meanwhile, blending DMG at 15% increases the boiler’s η t by 3%, reduces NOx emissions by 13.8% and HC emissions by 20%, and improves the e s by 8.63%. DMG, as a partial substitute for natural gas, outperforms hydrogen in various aspects. If this technology can be successfully applied and promoted, it could pave a new path for the sustainable development of energy in the boiler sector.

Suggested Citation

  • Weihong Xu & Ruhuan Jiang & Beidong Zhang & Yexin Chen & Yankun Jiang, 2025. "Comparative Assessment of Hydrogen and Methanol-Derived Fuel Co-Combustion for Improved Natural Gas Boiler Performance and Sustainability," Sustainability, MDPI, vol. 17(3), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:929-:d:1574740
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/929/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/929/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Chengjiang & Jia, Tingwen & Wang, Honglei & Wang, Xiaolin & Negnevitsky, Michael & Hu, Yu-jie & Zhao, Gang & Wang, Liang, 2023. "Assessing the prospect of deploying green methanol vehicles in China from energy, environmental and economic perspectives," Energy, Elsevier, vol. 263(PE).
    2. Crivellari, Anna & Cozzani, Valerio & Dincer, Ibrahim, 2019. "Exergetic and exergoeconomic analyses of novel methanol synthesis processes driven by offshore renewable energies," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue, Tingyi & Wang, Honglei & Li, Chengjiang & Hu, Yu-jie, 2024. "Optimization strategies for green power and certificate trading in China considering seasonality: An evolutionary game-based system dynamics," Energy, Elsevier, vol. 311(C).
    2. Wiranarongkorn, Kunlanan & Im-orb, Karittha & Panpranot, Joongjai & Maréchal, François & Arpornwichanop, Amornchai, 2021. "Exergy and exergoeconomic analyses of sustainable furfural production via reactive distillation," Energy, Elsevier, vol. 226(C).
    3. Wu, Tianyi & Wang, Junfeng & Zhang, Wei & Zuo, Lei & Xu, Haojie & Li, Bin, 2023. "Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge," Energy, Elsevier, vol. 273(C).
    4. Zhang, Yuan & Liang, Tianyang & Yang, Ke, 2022. "An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization," Energy, Elsevier, vol. 247(C).
    5. Bi, Sheng & Li, Chengjiang & Zhang, Wei & Xu, Guoteng & Wang, Honglei & Hu, Yu-Jie & Chen, Che & Wang, Sheng, 2024. "The prospect of methanol-fuel heating in northern China," Renewable Energy, Elsevier, vol. 237(PB).
    6. Li, Chengjiang & Hao, Qianwen & Wang, Honglei & Hu, Yu-jie & Xu, Guoteng & Qin, Quande & Wang, Xiaolin & Negnevitsky, Michael, 2024. "Assessing green methanol vehicles' deployment with life cycle assessment-system dynamics model," Applied Energy, Elsevier, vol. 363(C).
    7. Nakyai, Teeranun & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai & Saebea, Dang, 2020. "Comparative exergoeconomic analysis of indirect and direct bio-dimethyl ether syntheses based on air-steam biomass gasification with CO2 utilization," Energy, Elsevier, vol. 209(C).
    8. Chengjiang Li & Tingwen Jia & Shiyuan Wang & Xiaolin Wang & Michael Negnevitsky & Honglei Wang & Yujie Hu & Weibin Xu & Na Zhou & Gang Zhao, 2023. "Methanol Vehicles in China: A Review from a Policy Perspective," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    9. Atalay, Halil & Aslan, Volkan, 2023. "Advanced exergoeconomic and exergy performance assessments of a wind and solar energy powered hybrid dryer," Renewable Energy, Elsevier, vol. 209(C), pages 218-230.
    10. Amaya Martínez-Gracia & Sergio Usón & Mª Teresa Pintanel & Javier Uche & Ángel A. Bayod-Rújula & Alejandro Del Amo, 2021. "Exergy Assessment and Thermo-Economic Analysis of Hybrid Solar Systems with Seasonal Storage and Heat Pump Coupling in the Social Housing Sector in Zaragoza," Energies, MDPI, vol. 14(5), pages 1-32, February.
    11. Huang, Yue & Zhu, Lin & He, Yangdong & Zeng, Xingyan & Wang, Yuan & Hao, Qiang & Zhang, Chaoli & Zhu, Yifei, 2024. "Exergoenvironment evaluation of carbon resource conversion and utilization via CO2 direct hydrogenation for methanol and power cogeneration," Energy, Elsevier, vol. 306(C).
    12. Konstantin Osintsev & Sergei Aliukov & Yuri Prikhodko, 2021. "A Case study of Exergy Losses of a Ground Heat Pump and Photovoltaic Cells System and Their Optimization," Energies, MDPI, vol. 14(8), pages 1-22, April.
    13. Qiao, Junhao & Chen, Fan & Liu, Jingping & Guan, Jinhuan & Wang, Shuqian & Li, Yangyang, 2024. "Numerical study on the performance, combustion characteristics and energy flow distribution of gasoline-powered vehicle under synthetic actual driving test cycle," Energy, Elsevier, vol. 293(C).
    14. Yang, Yong & Li, Qiaoxing & Li, Chengjiang & Qin, Quande, 2024. "User requirements analysis of new energy vehicles based on improved Kano model," Energy, Elsevier, vol. 309(C).
    15. Kotowicz, Janusz & Węcel, Daniel & Brzęczek, Mateusz, 2021. "Analysis of the work of a “renewable” methanol production installation based ON H2 from electrolysis and CO2 from power plants," Energy, Elsevier, vol. 221(C).
    16. Kotowicz, J. & Brzęczek, M., 2021. "Methods to increase the efficiency of production and purification installations of renewable methanol," Renewable Energy, Elsevier, vol. 177(C), pages 568-583.
    17. Gao, Ruxing & Wang, Lei & Zhang, Leiyu & Zhang, Chundong & Jun, Ki-Won & Kim, Seok Ki & Zhao, Tiansheng & Wan, Hui & Guan, Guofeng & Zhu, Yuezhao, 2023. "A multi-criteria sustainability assessment and decision-making framework for DME synthesis via CO2 hydrogenation," Energy, Elsevier, vol. 275(C).
    18. Jia, Tingwen & Li, Chengjiang & Wang, Honglei & Hu, Yu-jie & Wang, Shiyuan & Xu, Guoteng & Hoang, Anh Tuan, 2024. "Subsidy policy or dual-credit policy? Evolutionary game analysis of green methanol vehicles promotion," Energy, Elsevier, vol. 293(C).
    19. Tola, Vittorio & Lonis, Francesco, 2021. "Low CO2 emissions chemically recuperated gas turbines fed by renewable methanol," Applied Energy, Elsevier, vol. 298(C).
    20. Ren, Maohui & Zhou, Tao & Wang, ChenXi, 2024. "New energy vehicle innovation network, innovation resources agglomeration externalities and energy efficiency: Navigating industry chain innovation," Technological Forecasting and Social Change, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:929-:d:1574740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.