IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v209y2023icp218-230.html
   My bibliography  Save this article

Advanced exergoeconomic and exergy performance assessments of a wind and solar energy powered hybrid dryer

Author

Listed:
  • Atalay, Halil
  • Aslan, Volkan

Abstract

Classical and advanced exergoeconomic and exergy performance values of a hybrid dryer operating with solar and wind energies are discussed and compared in this work. The effects of all equipments of the drying unit on the energy consumption cost are evaluated and their contribution to the system performance is examined. According to both classical and advanced exergy and exergoeconomic analysis data, it is concluded that the most significant system equipment to be improved is the wind turbine. Considering the results of advanced exergy analysis, it has been observed that 66.95% of the total exergy loss is avoidable and the wind turbine accounts for 46.35% of this loss. In terms of advanced exergoeconomic performance, it has been detected that 83.34% of the total cost is avoidable and from 35.34% of the total cost can be saved if the wind turbine is improved. The results clearly show that advanced exergy and exergoeconomic analysis is a very effective approach in revealing the real potential of the system and in determining the modifications to be performed to increase the system efficiency.

Suggested Citation

  • Atalay, Halil & Aslan, Volkan, 2023. "Advanced exergoeconomic and exergy performance assessments of a wind and solar energy powered hybrid dryer," Renewable Energy, Elsevier, vol. 209(C), pages 218-230.
  • Handle: RePEc:eee:renene:v:209:y:2023:i:c:p:218-230
    DOI: 10.1016/j.renene.2023.03.137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123004408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
    2. Tsatsaronis, G. & Morosuk, T., 2010. "Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas," Energy, Elsevier, vol. 35(2), pages 820-829.
    3. Hao, Wengang & Liu, Shuonan & Lai, Yanhua & Wang, Mingtao & Liu, Shengze, 2022. "Research on drying Lentinus edodes in a direct expansion heat pump assisted solar drying system and performance of different operating modes," Renewable Energy, Elsevier, vol. 196(C), pages 638-647.
    4. Atalay, Halil, 2019. "Comparative assessment of solar and heat pump dryers with regards to exergy and exergoeconomic performance," Energy, Elsevier, vol. 189(C).
    5. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi, 2018. "A novel trigeneration system using geothermal heat source and liquefied natural gas cold energy recovery: Energy, exergy and exergoeconomic analysis," Renewable Energy, Elsevier, vol. 119(C), pages 513-527.
    6. Diana L. Tinoco-Caicedo & Alexis Lozano-Medina & Ana M. Blanco-Marigorta, 2020. "Conventional and Advanced Exergy and Exergoeconomic Analysis of a Spray Drying System: A Case Study of an Instant Coffee Factory in Ecuador," Energies, MDPI, vol. 13(21), pages 1-19, October.
    7. Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
    8. Shokati, Naser & Ranjbar, Faramarz & Yari, Mortaza, 2015. "Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study," Renewable Energy, Elsevier, vol. 83(C), pages 527-542.
    9. Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Carassai, Anna, 2012. "Conventional and advanced exergetic analyses applied to a combined cycle power plant," Energy, Elsevier, vol. 41(1), pages 146-152.
    10. Atalay, Halil & Yavaş, Nur & Turhan Çoban, M., 2022. "Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer," Renewable Energy, Elsevier, vol. 187(C), pages 1173-1183.
    11. Akbulut, Abdullah & Durmuş, Aydin, 2010. "Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer," Energy, Elsevier, vol. 35(4), pages 1754-1763.
    12. Erbay, Zafer & Hepbasli, Arif, 2017. "Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method," Energy, Elsevier, vol. 127(C), pages 502-515.
    13. Wang, Xurong & Yang, Yi & Zheng, Ya & Dai, Yiping, 2017. "Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application," Energy, Elsevier, vol. 119(C), pages 971-982.
    14. Anvari, Simin & Khoshbakhti Saray, Rahim & Bahlouli, Keyvan, 2015. "Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production," Energy, Elsevier, vol. 91(C), pages 925-939.
    15. Khanlari, Ataollah & Sözen, Adnan & Afshari, Faraz & Tuncer, Azim Doğuş, 2021. "Energy-exergy and sustainability analysis of a PV-driven quadruple-flow solar drying system," Renewable Energy, Elsevier, vol. 175(C), pages 1151-1166.
    16. Crivellari, Anna & Cozzani, Valerio & Dincer, Ibrahim, 2019. "Exergetic and exergoeconomic analyses of novel methanol synthesis processes driven by offshore renewable energies," Energy, Elsevier, vol. 187(C).
    17. Sonthikun, Sonthawi & Chairat, Phaochinnawat & Fardsin, Kitti & Kirirat, Pairoj & Kumar, Anil & Tekasakul, Perapong, 2016. "Computational fluid dynamic analysis of innovative design of solar-biomass hybrid dryer: An experimental validation," Renewable Energy, Elsevier, vol. 92(C), pages 185-191.
    18. Atalay, Halil, 2019. "Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system," Energy, Elsevier, vol. 172(C), pages 1037-1052.
    19. Rashidi, Milad & Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Kermani, Ali M., 2021. "Acceleration the drying process of oleaster (Elaeagnus angustifolia L.) using reflectors and desiccant system in a solar drying system," Renewable Energy, Elsevier, vol. 171(C), pages 526-541.
    20. Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
    21. Xu, Bo & Wang, Dengyun & Li, Zhaohai & Chen, Zhenqian, 2021. "Drying and dynamic performance of well-adapted solar assisted heat pump drying system," Renewable Energy, Elsevier, vol. 164(C), pages 1290-1305.
    22. Singh, Akhilesh & Sarkar, Jahar & Sahoo, Rashmi Rekha, 2020. "Experimental energy, exergy, economic and exergoeconomic analyses of batch-type solar-assisted heat pump dryer," Renewable Energy, Elsevier, vol. 156(C), pages 1107-1116.
    23. Atalay, Halil, 2022. "Exergoeconomic and environmental impact evaluation of wind energy assisted hybrid solar dryer and conventional solar dryer," Renewable Energy, Elsevier, vol. 200(C), pages 1416-1425.
    24. Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duque-Dussán, Eduardo & Sanz-Uribe, Juan R. & Banout, Jan, 2023. "Design and evaluation of a hybrid solar dryer for postharvesting processing of parchment coffee," Renewable Energy, Elsevier, vol. 215(C).
    2. Liu, Lintong & Zhai, Rongrong & Hu, Yangdi, 2023. "Multi-objective optimization with advanced exergy analysis of a wind-solar‑hydrogen multi-energy supply system," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atalay, Halil & Yavaş, Nur & Turhan Çoban, M., 2022. "Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer," Renewable Energy, Elsevier, vol. 187(C), pages 1173-1183.
    2. Atalay, Halil, 2022. "Exergoeconomic and environmental impact evaluation of wind energy assisted hybrid solar dryer and conventional solar dryer," Renewable Energy, Elsevier, vol. 200(C), pages 1416-1425.
    3. Atalay, Halil, 2019. "Comparative assessment of solar and heat pump dryers with regards to exergy and exergoeconomic performance," Energy, Elsevier, vol. 189(C).
    4. Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
    5. Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
    6. Gupta, Ankur & Das, Biplab & Biswas, Agnimitra & Mondol, Jayanta Deb, 2022. "Sustainability and 4E analysis of novel solar photovoltaic-thermal solar dryer under forced and natural convection drying," Renewable Energy, Elsevier, vol. 188(C), pages 1008-1021.
    7. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    8. Erbay, Zafer & Hepbasli, Arif, 2017. "Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method," Energy, Elsevier, vol. 127(C), pages 502-515.
    9. Zoukit, Ahmed & El Ferouali, Hicham & Salhi, Issam & Doubabi, Said & Abdenouri, Naji, 2019. "Simulation, design and experimental performance evaluation of an innovative hybrid solar-gas dryer," Energy, Elsevier, vol. 189(C).
    10. Waseem Amjad & Muhammad Ali Raza & Furqan Asghar & Anjum Munir & Faisal Mahmood & Syed Nabeel Husnain & Muhammad Imtiaz Hussain & Jun-Tae Kim, 2022. "Advanced Exergy Analyses of a Solar Hybrid Food Dehydrator," Energies, MDPI, vol. 15(4), pages 1-15, February.
    11. Duque-Dussán, Eduardo & Sanz-Uribe, Juan R. & Banout, Jan, 2023. "Design and evaluation of a hybrid solar dryer for postharvesting processing of parchment coffee," Renewable Energy, Elsevier, vol. 215(C).
    12. Madhankumar, S. & Viswanathan, Karthickeyan, 2022. "Computational and experimental study of a novel corrugated-type absorber plate solar collector with thermal energy storage moisture removal device," Applied Energy, Elsevier, vol. 324(C).
    13. Yao, Muchi & Li, Ming & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Gao, Meng & Deng, Zhihan & Xing, Tianyu & Zhang, Zude & Zhang, Wenxiang, 2023. "Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system," Renewable Energy, Elsevier, vol. 206(C), pages 223-238.
    14. Balli, Ozgur, 2017. "Advanced exergy analyses of an aircraft turboprop engine (TPE)," Energy, Elsevier, vol. 124(C), pages 599-612.
    15. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    16. Zou, Lingeng & Liu, Ye & Yu, Mengqi & Yu, Jianlin, 2023. "A review of solar assisted heat pump technology for drying applications," Energy, Elsevier, vol. 283(C).
    17. Voloshchuk, Volodymyr & Gullo, Paride & Sereda, Volodymyr, 2020. "Advanced exergy-based performance enhancement of heat pump space heating system," Energy, Elsevier, vol. 205(C).
    18. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    19. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    20. Aghaei, Ali Tavakkol & Saray, Rahim Khoshbakhti, 2021. "Optimization of a combined cooling, heating, and power (CCHP) system with a gas turbine prime mover: A case study in the dairy industry," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:209:y:2023:i:c:p:218-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.